Cargando…
PDNet: Improved YOLOv5 Nondeformable Disease Detection Network for Asphalt Pavement
In the daily inspection task of the expressway, accuracy and speed are the two most important indexes to reflect the detection efficiency of nondeformation diseases of asphalt pavement. To achieve model compression, accelerated detection, and accurate identification under multiscale conditions, a li...
Autores principales: | Yang, Zhen, Li, Lin, Luo, Wenting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283017/ https://www.ncbi.nlm.nih.gov/pubmed/35845879 http://dx.doi.org/10.1155/2022/5133543 |
Ejemplares similares
-
Pavement Disease Detection through Improved YOLOv5s Neural Network
por: Chu, Yinze, et al.
Publicado: (2022) -
Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
por: Huang, Peile, et al.
Publicado: (2023) -
A pavement distresses identification method optimized for YOLOv5s
por: Guo, Keyou, et al.
Publicado: (2022) -
Laboratory Performance of Hot Mix Asphalt with High Reclaimed Asphalt Pavement (RAP) and Fine Reclaimed Asphalt Pavement (FRAP) Content
por: Han, Sen, et al.
Publicado: (2019) -
Nondeformed Ultrasound Image Production Method for Ultrasound-Guided Radiotherapy
por: Li, Qixuan, et al.
Publicado: (2023)