Cargando…
LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis
In recent years, within the scope of financial quantification, quantitative investment models that support human-oriented algorithms have been proposed. These models attempt to characterize fiat-delayed series through intelligent acquaintance methods to predict data and arrange investment strategies...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283061/ https://www.ncbi.nlm.nih.gov/pubmed/35847626 http://dx.doi.org/10.1155/2022/1852138 |
_version_ | 1784747252165640192 |
---|---|
author | Yang, Haohua |
author_facet | Yang, Haohua |
author_sort | Yang, Haohua |
collection | PubMed |
description | In recent years, within the scope of financial quantification, quantitative investment models that support human-oriented algorithms have been proposed. These models attempt to characterize fiat-delayed series through intelligent acquaintance methods to predict data and arrange investment strategies. The standard long short-term memory (LSTM) neural network has the shortcoming of low effectiveness of the fiscal cycle sequence. This work utters throughout the amended LSTM design. The augury result of the neural reticulation was upgraded by coalesce attentional propose to the LSTM class, and a genetic algorithmic program product was formulated. Genetic algorithm (GA) updates the inalienable parameters to a higher generalization aptitude. Using man stock insignitor future data from January 2019 to May 2020, we accomplish a station-of-the-contrivance algorithmic rule. Inferences have shown that the improved LSTM example proposed in this paper outperforms other designs in multiple respect, and it performs effectively in investment portfolio design, which is suitable for future investment. |
format | Online Article Text |
id | pubmed-9283061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92830612022-07-15 LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis Yang, Haohua Appl Bionics Biomech Research Article In recent years, within the scope of financial quantification, quantitative investment models that support human-oriented algorithms have been proposed. These models attempt to characterize fiat-delayed series through intelligent acquaintance methods to predict data and arrange investment strategies. The standard long short-term memory (LSTM) neural network has the shortcoming of low effectiveness of the fiscal cycle sequence. This work utters throughout the amended LSTM design. The augury result of the neural reticulation was upgraded by coalesce attentional propose to the LSTM class, and a genetic algorithmic program product was formulated. Genetic algorithm (GA) updates the inalienable parameters to a higher generalization aptitude. Using man stock insignitor future data from January 2019 to May 2020, we accomplish a station-of-the-contrivance algorithmic rule. Inferences have shown that the improved LSTM example proposed in this paper outperforms other designs in multiple respect, and it performs effectively in investment portfolio design, which is suitable for future investment. Hindawi 2022-07-07 /pmc/articles/PMC9283061/ /pubmed/35847626 http://dx.doi.org/10.1155/2022/1852138 Text en Copyright © 2022 Haohua Yang. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Haohua LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis |
title | LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis |
title_full | LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis |
title_fullStr | LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis |
title_full_unstemmed | LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis |
title_short | LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis |
title_sort | lstm-based deep model for investment portfolio assessment and analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283061/ https://www.ncbi.nlm.nih.gov/pubmed/35847626 http://dx.doi.org/10.1155/2022/1852138 |
work_keys_str_mv | AT yanghaohua lstmbaseddeepmodelforinvestmentportfolioassessmentandanalysis |