Cargando…
Comment on “Machine Learning for Early Detection of Hypoxic‑ischemic Brain Injury After Cardiac Arrest”
Autores principales: | Molinski, Noah S., Meddeb, Aymen, Kenda, Martin, Scheel, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283350/ https://www.ncbi.nlm.nih.gov/pubmed/35614295 http://dx.doi.org/10.1007/s12028-022-01526-y |
Ejemplares similares
-
Comment on “Machine Learning for Early Detection of Hypoxic-Ischemic Brain Injury After Cardiac Arrest” Submitted by Noah Salomon Molinski et al.
por: Mansour, Ali, et al.
Publicado: (2022) -
Machine Learning for Early Detection of Hypoxic-Ischemic Brain Injury After Cardiac Arrest
por: Mansour, Ali, et al.
Publicado: (2021) -
Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest
por: Sekhon, Mypinder S., et al.
Publicado: (2017) -
Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly
por: Meddeb, Aymen, et al.
Publicado: (2022) -
Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model
por: Sekhon, Mypinder S., et al.
Publicado: (2017)