Cargando…

Antigenic comparison of the neuraminidases from recent influenza A vaccine viruses and 2019–2020 circulating strains

Although viral-based influenza vaccines contain neuraminidase (NA or N) antigens from the recommended seasonal strains, NA is not extensively evaluated like hemagglutinin (H) during the strain selection process. Here, we compared the antigenicity of NAs from recently recommended H1N1 (2010–2021 seas...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jin, Li, Xing, Klenow, Laura, Malik, Tahir, Wan, Hongquan, Ye, Zhiping, Daniels, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283437/
https://www.ncbi.nlm.nih.gov/pubmed/35835790
http://dx.doi.org/10.1038/s41541-022-00500-1
Descripción
Sumario:Although viral-based influenza vaccines contain neuraminidase (NA or N) antigens from the recommended seasonal strains, NA is not extensively evaluated like hemagglutinin (H) during the strain selection process. Here, we compared the antigenicity of NAs from recently recommended H1N1 (2010–2021 seasons) and H3N2 (2015–2021 seasons) vaccine strains and viruses that circulated between September 2019 and December 2020. The antigenicity was evaluated by measuring NA ferret antisera titers that provide 50% inhibition of NA activity in an enzyme-linked lectin assay. Our results show that NAs from circulating H1N1 viruses and vaccine strains for the 2017–2021 seasons are all antigenically similar and distinct from the NA in the H1N1 strain recommended for the 2010–2017 seasons. Changes in N1 antigenicity were attributed to the accumulation of substitutions over time, especially the loss of an N-linked glycosylation site (Asn386) in current N1s. The NAs from circulating H3N2 viruses and the 2020–2021 vaccine strains showed similar antigenicity that varied across the N2s in the 2016–2020 vaccine strains and was distinct from the N2 in the 2015–2016 vaccine strain. These data suggest that the recent N1 antigenicity has remained similar since the loss of the head domain N-linked glycosylation site, whereas N2 antigenicity has changed more incrementally each season.