Cargando…
Area-based breast percentage density estimation in mammograms using weight-adaptive multitask learning
Breast density, which is a measure of the relative amount of fibroglandular tissue within the breast area, is one of the most important breast cancer risk factors. Accurate segmentation of fibroglandular tissues and breast area is crucial for computing the breast density. Semiautomatic and fully aut...
Autores principales: | Gudhe, Naga Raju, Behravan, Hamid, Sudah, Mazen, Okuma, Hidemi, Vanninen, Ritva, Kosma, Veli-Matti, Mannermaa, Arto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283472/ https://www.ncbi.nlm.nih.gov/pubmed/35835933 http://dx.doi.org/10.1038/s41598-022-16141-2 |
Ejemplares similares
-
Multi-level dilated residual network for biomedical image segmentation
por: Gudhe, Naga Raju, et al.
Publicado: (2021) -
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning
por: Gudhe, Naga Raju, et al.
Publicado: (2023) -
Peritumor to tumor apparent diffusion coefficient ratio is associated with biologically more aggressive breast cancer features and correlates with the prognostication tools
por: Okuma, Hidemi, et al.
Publicado: (2020) -
Predicting breast cancer risk using interacting genetic and demographic factors and machine learning
por: Behravan, Hamid, et al.
Publicado: (2020) -
Prognostic contribution of mammographic breast density and HER2 overexpression to the Nottingham Prognostic Index in patients with invasive breast cancer
por: Masarwah, Amro, et al.
Publicado: (2016)