Cargando…

Model-based prediction of optogenetic sound encoding in the human cochlea by future optical cochlear implants

When hearing fails, electrical cochlear implants (eCIs) partially restore hearing by direct stimulation of spiral ganglion neurons (SGNs). As light can be better confined in space than electrical current, optical CIs (oCIs) provide more spectral information promising a fundamental improvement of hea...

Descripción completa

Detalles Bibliográficos
Autores principales: Khurana, Lakshay, Keppeler, Daniel, Jablonski, Lukasz, Moser, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283772/
https://www.ncbi.nlm.nih.gov/pubmed/35860414
http://dx.doi.org/10.1016/j.csbj.2022.06.061
Descripción
Sumario:When hearing fails, electrical cochlear implants (eCIs) partially restore hearing by direct stimulation of spiral ganglion neurons (SGNs). As light can be better confined in space than electrical current, optical CIs (oCIs) provide more spectral information promising a fundamental improvement of hearing restoration by cochlear implants. Here, we turned to computer modelling for predicting the outcome of optogenetic hearing restoration by future oCIs in humans. We combined three-dimensional reconstruction of the human cochlea with ray-tracing simulation of emission from LED or laser-coupled waveguide emitters of the oCI. Irradiance was read out at the somata of SGNs. The irradiance values reached with waveguides were about 14 times higher than with LEDs, at the same radiant flux of the emitter. Moreover, waveguides outperformed LEDs regarding spectral selectivity. oCIs with either emitter type showed greater spectral selectivity when compared to eCI. In addition, modeling the effects of the source-to-SGN distance, orientation of the sources and impact of scar tissue further informs the development of optogenetic hearing restoration.