Cargando…
Metric Learning in Freewill EEG Pre-Movement and Movement Intention Classification for Brain Machine Interfaces
Decoding movement related intentions is a key step to implement BMIs. Decoding EEG has been challenging due to its low spatial resolution and signal to noise ratio. Metric learning allows finding a representation of data in a way that captures a desired notion of similarity between data points. In t...
Autores principales: | Plucknett, William, Sanchez Giraldo, Luis G., Bae, Jihye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283905/ https://www.ncbi.nlm.nih.gov/pubmed/35845246 http://dx.doi.org/10.3389/fnhum.2022.902183 |
Ejemplares similares
-
Freewill and responsibility
por: Kenny, Anthony, 1931-
Publicado: (1978) -
Editorial: Towards dependable brain computer/machine interfaces for movement control
por: Müller-Putz, Gernot R., et al.
Publicado: (2023) -
The classification of movement intention through machine learning models: the identification of significant time-domain EMG features
por: Mohd Khairuddin, Ismail, et al.
Publicado: (2021) -
Weighted Brain Network Metrics for Decoding Action Intention Understanding Based on EEG
por: Xiong, Xingliang, et al.
Publicado: (2020) -
Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates
por: López-Larraz, Eduardo, et al.
Publicado: (2014)