Cargando…
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
Weed control has received great attention due to its significant influence on crop yield and food production. Accurate mapping of crop and weed is a prerequisite for the development of an automatic weed management system. In this paper, we propose a weed and crop segmentation method, SemiWeedNet, to...
Autores principales: | Nong, Chunshi, Fan, Xijian, Wang, Junling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283949/ https://www.ncbi.nlm.nih.gov/pubmed/35845704 http://dx.doi.org/10.3389/fpls.2022.927368 |
Ejemplares similares
-
A novel semi-supervised framework for UAV based crop/weed classification
por: Khan, Shahbaz, et al.
Publicado: (2021) -
Editorial: Advanced technologies of UAV application in crop pest, disease and weed control
por: Zhang, Ruirui, et al.
Publicado: (2023) -
Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model
por: Genze, Nikita, et al.
Publicado: (2023) -
Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery
por: Li, Jie, et al.
Publicado: (2023) -
Classification of Toona sinensis Young Leaves Using Machine Learning and UAV-Borne Hyperspectral Imagery
por: Wu, Haoran, et al.
Publicado: (2022)