Cargando…
Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches
AIM: To facilitate the development of a COVID-19 predictive model in Croatia by analyzing three different methodological approaches. METHOD: We used the historical data to explore the fit of the extended SEIRD compartmental model, the Heidler function, an exponential approximation in analyzing elect...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Croatian Medical Schools
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284011/ https://www.ncbi.nlm.nih.gov/pubmed/35722698 http://dx.doi.org/10.3325/cmj.2022.63.295 |
_version_ | 1784747460448485376 |
---|---|
author | Lojić Kapetanović, Ante Lukezić, Marina Pribisalić, Ajka Poljak, Dragan Polašek, Ozren |
author_facet | Lojić Kapetanović, Ante Lukezić, Marina Pribisalić, Ajka Poljak, Dragan Polašek, Ozren |
author_sort | Lojić Kapetanović, Ante |
collection | PubMed |
description | AIM: To facilitate the development of a COVID-19 predictive model in Croatia by analyzing three different methodological approaches. METHOD: We used the historical data to explore the fit of the extended SEIRD compartmental model, the Heidler function, an exponential approximation in analyzing electromagnetic phenomena related to lightning strikes, and the Holt-Winters smoothing (HWS) for short-term epidemic predictions. We also compared various methods for the estimation of R0. RESULTS: The R0 estimates for Croatia varied from 2.09 (95% CI 1.77-2.40) obtained by using an empirical post-hoc method to 2.28 (95% CI 2.27-2.28) when we assumed an exponential outbreak at the very beginning of the COVID-19 epidemic in Croatia. Although the SEIRD model provided a good fit for the early epidemic stages, it was outperformed by the Heidler function fit. HWS achieved accurate short-term predictions and depended the least on model entry parameters. Neither model performed well across the entire observed period, which was characterized by multiple wave-form events, influenced by the re-opening for the tourist season during the summer, mandatory masks use in closed spaces, and numerous measures introduced in retail stores and public places. However, an extension of the Heidler function achieved the best overall fit. CONCLUSIONS: Predicting future epidemic events remains difficult because modeling relies on the accuracy of the information on population structure and micro-environmental exposures, constant changes of the input parameters, varying societal adherence to anti-epidemic measures, and changes in the biological interactions of the virus and hosts. |
format | Online Article Text |
id | pubmed-9284011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Croatian Medical Schools |
record_format | MEDLINE/PubMed |
spelling | pubmed-92840112022-07-29 Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches Lojić Kapetanović, Ante Lukezić, Marina Pribisalić, Ajka Poljak, Dragan Polašek, Ozren Croat Med J Research Article AIM: To facilitate the development of a COVID-19 predictive model in Croatia by analyzing three different methodological approaches. METHOD: We used the historical data to explore the fit of the extended SEIRD compartmental model, the Heidler function, an exponential approximation in analyzing electromagnetic phenomena related to lightning strikes, and the Holt-Winters smoothing (HWS) for short-term epidemic predictions. We also compared various methods for the estimation of R0. RESULTS: The R0 estimates for Croatia varied from 2.09 (95% CI 1.77-2.40) obtained by using an empirical post-hoc method to 2.28 (95% CI 2.27-2.28) when we assumed an exponential outbreak at the very beginning of the COVID-19 epidemic in Croatia. Although the SEIRD model provided a good fit for the early epidemic stages, it was outperformed by the Heidler function fit. HWS achieved accurate short-term predictions and depended the least on model entry parameters. Neither model performed well across the entire observed period, which was characterized by multiple wave-form events, influenced by the re-opening for the tourist season during the summer, mandatory masks use in closed spaces, and numerous measures introduced in retail stores and public places. However, an extension of the Heidler function achieved the best overall fit. CONCLUSIONS: Predicting future epidemic events remains difficult because modeling relies on the accuracy of the information on population structure and micro-environmental exposures, constant changes of the input parameters, varying societal adherence to anti-epidemic measures, and changes in the biological interactions of the virus and hosts. Croatian Medical Schools 2022-06 /pmc/articles/PMC9284011/ /pubmed/35722698 http://dx.doi.org/10.3325/cmj.2022.63.295 Text en Copyright © 2022 by the Croatian Medical Journal. All rights reserved. https://creativecommons.org/licenses/by/2.5/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lojić Kapetanović, Ante Lukezić, Marina Pribisalić, Ajka Poljak, Dragan Polašek, Ozren Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches |
title | Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches |
title_full | Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches |
title_fullStr | Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches |
title_full_unstemmed | Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches |
title_short | Modeling the COVID-19 epidemic in Croatia: a comparison of three analytic approaches |
title_sort | modeling the covid-19 epidemic in croatia: a comparison of three analytic approaches |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284011/ https://www.ncbi.nlm.nih.gov/pubmed/35722698 http://dx.doi.org/10.3325/cmj.2022.63.295 |
work_keys_str_mv | AT lojickapetanovicante modelingthecovid19epidemicincroatiaacomparisonofthreeanalyticapproaches AT lukezicmarina modelingthecovid19epidemicincroatiaacomparisonofthreeanalyticapproaches AT pribisalicajka modelingthecovid19epidemicincroatiaacomparisonofthreeanalyticapproaches AT poljakdragan modelingthecovid19epidemicincroatiaacomparisonofthreeanalyticapproaches AT polasekozren modelingthecovid19epidemicincroatiaacomparisonofthreeanalyticapproaches |