Cargando…

Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive

The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode‐electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa‐functional additive...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xin, Liu, Jiandong, He, Jian, Qi, Shihan, Wu, Mingguang, Wang, Huaping, Jiang, Gaoxue, Huang, Junda, Wu, Daxiong, Li, Fang, Ma, Jianmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284149/
https://www.ncbi.nlm.nih.gov/pubmed/35508898
http://dx.doi.org/10.1002/advs.202201297
_version_ 1784747499622236160
author Li, Xin
Liu, Jiandong
He, Jian
Qi, Shihan
Wu, Mingguang
Wang, Huaping
Jiang, Gaoxue
Huang, Junda
Wu, Daxiong
Li, Fang
Ma, Jianmin
author_facet Li, Xin
Liu, Jiandong
He, Jian
Qi, Shihan
Wu, Mingguang
Wang, Huaping
Jiang, Gaoxue
Huang, Junda
Wu, Daxiong
Li, Fang
Ma, Jianmin
author_sort Li, Xin
collection PubMed
description The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode‐electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa‐functional additive to inhibit the dendrite growth on the surface of lithium (Li) anode, and then improve the cycling performance and rate capabilities of Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) (NCM622). The HFBMZ can remove the trace H(2)O and HF from the electrolyte, reducing the by‐products on the surface of solid electrolyte interphase (SEI) and inhibiting the dissolution of metal ions from NCM622. Also, the HFBMZ can enhance the wettability of the separator to promote uniform Li deposition. HFBMZ can make Li(+) easy to be desolvated, resulting in the increase of Li(+) flux on Li anode surface. Moreover, the HFBMZ can optimize the composition and structure of SEI. Therefore, the Li||Li symmetrical cells with 1 wt% HFBMZ‐contained electrolyte can achieve stable cycling for more than 1200 h at 0.5 mA cm(–2). In addition, the capacity retention rate of the Li||NCM622 can reach 92% after 150 cycles at 100 mA g(–1).
format Online
Article
Text
id pubmed-9284149
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92841492022-07-15 Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive Li, Xin Liu, Jiandong He, Jian Qi, Shihan Wu, Mingguang Wang, Huaping Jiang, Gaoxue Huang, Junda Wu, Daxiong Li, Fang Ma, Jianmin Adv Sci (Weinh) Research Articles The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode‐electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa‐functional additive to inhibit the dendrite growth on the surface of lithium (Li) anode, and then improve the cycling performance and rate capabilities of Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) (NCM622). The HFBMZ can remove the trace H(2)O and HF from the electrolyte, reducing the by‐products on the surface of solid electrolyte interphase (SEI) and inhibiting the dissolution of metal ions from NCM622. Also, the HFBMZ can enhance the wettability of the separator to promote uniform Li deposition. HFBMZ can make Li(+) easy to be desolvated, resulting in the increase of Li(+) flux on Li anode surface. Moreover, the HFBMZ can optimize the composition and structure of SEI. Therefore, the Li||Li symmetrical cells with 1 wt% HFBMZ‐contained electrolyte can achieve stable cycling for more than 1200 h at 0.5 mA cm(–2). In addition, the capacity retention rate of the Li||NCM622 can reach 92% after 150 cycles at 100 mA g(–1). John Wiley and Sons Inc. 2022-05-04 /pmc/articles/PMC9284149/ /pubmed/35508898 http://dx.doi.org/10.1002/advs.202201297 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Li, Xin
Liu, Jiandong
He, Jian
Qi, Shihan
Wu, Mingguang
Wang, Huaping
Jiang, Gaoxue
Huang, Junda
Wu, Daxiong
Li, Fang
Ma, Jianmin
Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
title Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
title_full Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
title_fullStr Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
title_full_unstemmed Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
title_short Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
title_sort separator‐wetted, acid‐ and water‐scavenged electrolyte with optimized li‐ion solvation to form dual efficient electrode electrolyte interphases via hexa‐functional additive
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284149/
https://www.ncbi.nlm.nih.gov/pubmed/35508898
http://dx.doi.org/10.1002/advs.202201297
work_keys_str_mv AT lixin separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT liujiandong separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT hejian separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT qishihan separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT wumingguang separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT wanghuaping separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT jianggaoxue separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT huangjunda separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT wudaxiong separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT lifang separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive
AT majianmin separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive