Cargando…
Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive
The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode‐electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa‐functional additive...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284149/ https://www.ncbi.nlm.nih.gov/pubmed/35508898 http://dx.doi.org/10.1002/advs.202201297 |
_version_ | 1784747499622236160 |
---|---|
author | Li, Xin Liu, Jiandong He, Jian Qi, Shihan Wu, Mingguang Wang, Huaping Jiang, Gaoxue Huang, Junda Wu, Daxiong Li, Fang Ma, Jianmin |
author_facet | Li, Xin Liu, Jiandong He, Jian Qi, Shihan Wu, Mingguang Wang, Huaping Jiang, Gaoxue Huang, Junda Wu, Daxiong Li, Fang Ma, Jianmin |
author_sort | Li, Xin |
collection | PubMed |
description | The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode‐electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa‐functional additive to inhibit the dendrite growth on the surface of lithium (Li) anode, and then improve the cycling performance and rate capabilities of Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) (NCM622). The HFBMZ can remove the trace H(2)O and HF from the electrolyte, reducing the by‐products on the surface of solid electrolyte interphase (SEI) and inhibiting the dissolution of metal ions from NCM622. Also, the HFBMZ can enhance the wettability of the separator to promote uniform Li deposition. HFBMZ can make Li(+) easy to be desolvated, resulting in the increase of Li(+) flux on Li anode surface. Moreover, the HFBMZ can optimize the composition and structure of SEI. Therefore, the Li||Li symmetrical cells with 1 wt% HFBMZ‐contained electrolyte can achieve stable cycling for more than 1200 h at 0.5 mA cm(–2). In addition, the capacity retention rate of the Li||NCM622 can reach 92% after 150 cycles at 100 mA g(–1). |
format | Online Article Text |
id | pubmed-9284149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92841492022-07-15 Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive Li, Xin Liu, Jiandong He, Jian Qi, Shihan Wu, Mingguang Wang, Huaping Jiang, Gaoxue Huang, Junda Wu, Daxiong Li, Fang Ma, Jianmin Adv Sci (Weinh) Research Articles The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode‐electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa‐functional additive to inhibit the dendrite growth on the surface of lithium (Li) anode, and then improve the cycling performance and rate capabilities of Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) (NCM622). The HFBMZ can remove the trace H(2)O and HF from the electrolyte, reducing the by‐products on the surface of solid electrolyte interphase (SEI) and inhibiting the dissolution of metal ions from NCM622. Also, the HFBMZ can enhance the wettability of the separator to promote uniform Li deposition. HFBMZ can make Li(+) easy to be desolvated, resulting in the increase of Li(+) flux on Li anode surface. Moreover, the HFBMZ can optimize the composition and structure of SEI. Therefore, the Li||Li symmetrical cells with 1 wt% HFBMZ‐contained electrolyte can achieve stable cycling for more than 1200 h at 0.5 mA cm(–2). In addition, the capacity retention rate of the Li||NCM622 can reach 92% after 150 cycles at 100 mA g(–1). John Wiley and Sons Inc. 2022-05-04 /pmc/articles/PMC9284149/ /pubmed/35508898 http://dx.doi.org/10.1002/advs.202201297 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Li, Xin Liu, Jiandong He, Jian Qi, Shihan Wu, Mingguang Wang, Huaping Jiang, Gaoxue Huang, Junda Wu, Daxiong Li, Fang Ma, Jianmin Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive |
title | Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive |
title_full | Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive |
title_fullStr | Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive |
title_full_unstemmed | Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive |
title_short | Separator‐Wetted, Acid‐ and Water‐Scavenged Electrolyte with Optimized Li‐Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa‐Functional Additive |
title_sort | separator‐wetted, acid‐ and water‐scavenged electrolyte with optimized li‐ion solvation to form dual efficient electrode electrolyte interphases via hexa‐functional additive |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284149/ https://www.ncbi.nlm.nih.gov/pubmed/35508898 http://dx.doi.org/10.1002/advs.202201297 |
work_keys_str_mv | AT lixin separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT liujiandong separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT hejian separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT qishihan separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT wumingguang separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT wanghuaping separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT jianggaoxue separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT huangjunda separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT wudaxiong separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT lifang separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive AT majianmin separatorwettedacidandwaterscavengedelectrolytewithoptimizedliionsolvationtoformdualefficientelectrodeelectrolyteinterphasesviahexafunctionaladditive |