Cargando…

Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys

Insufficient availability of molten salt corrosion‐resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understandi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yafei, Goh, Bonita, Nelaturu, Phalgun, Duong, Thien, Hassan, Najlaa, David, Raphaelle, Moorehead, Michael, Chaudhuri, Santanu, Creuziger, Adam, Hattrick‐Simpers, Jason, Thoma, Dan J., Sridharan, Kumar, Couet, Adrien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284150/
https://www.ncbi.nlm.nih.gov/pubmed/35524640
http://dx.doi.org/10.1002/advs.202200370
_version_ 1784747499860262912
author Wang, Yafei
Goh, Bonita
Nelaturu, Phalgun
Duong, Thien
Hassan, Najlaa
David, Raphaelle
Moorehead, Michael
Chaudhuri, Santanu
Creuziger, Adam
Hattrick‐Simpers, Jason
Thoma, Dan J.
Sridharan, Kumar
Couet, Adrien
author_facet Wang, Yafei
Goh, Bonita
Nelaturu, Phalgun
Duong, Thien
Hassan, Najlaa
David, Raphaelle
Moorehead, Michael
Chaudhuri, Santanu
Creuziger, Adam
Hattrick‐Simpers, Jason
Thoma, Dan J.
Sridharan, Kumar
Couet, Adrien
author_sort Wang, Yafei
collection PubMed
description Insufficient availability of molten salt corrosion‐resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here an integrated approach is presented using a set of high‐throughput (HTP) alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of Cr—Fe—Mn—Ni alloys are evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion‐resistant alloy development can be accelerated by 2 to 3 orders of magnitude. Based on the obtained results, a sacrificial protection mechanism is unveiled in the corrosion of Cr—Fe—Mn—Ni alloys in molten salts which can be applied to protect the less unstable elements in the alloy from being depleted, and provided new insights on the design of high‐temperature molten salt corrosion‐resistant alloys.
format Online
Article
Text
id pubmed-9284150
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92841502022-07-15 Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys Wang, Yafei Goh, Bonita Nelaturu, Phalgun Duong, Thien Hassan, Najlaa David, Raphaelle Moorehead, Michael Chaudhuri, Santanu Creuziger, Adam Hattrick‐Simpers, Jason Thoma, Dan J. Sridharan, Kumar Couet, Adrien Adv Sci (Weinh) Research Articles Insufficient availability of molten salt corrosion‐resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here an integrated approach is presented using a set of high‐throughput (HTP) alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of Cr—Fe—Mn—Ni alloys are evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion‐resistant alloy development can be accelerated by 2 to 3 orders of magnitude. Based on the obtained results, a sacrificial protection mechanism is unveiled in the corrosion of Cr—Fe—Mn—Ni alloys in molten salts which can be applied to protect the less unstable elements in the alloy from being depleted, and provided new insights on the design of high‐temperature molten salt corrosion‐resistant alloys. John Wiley and Sons Inc. 2022-05-07 /pmc/articles/PMC9284150/ /pubmed/35524640 http://dx.doi.org/10.1002/advs.202200370 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wang, Yafei
Goh, Bonita
Nelaturu, Phalgun
Duong, Thien
Hassan, Najlaa
David, Raphaelle
Moorehead, Michael
Chaudhuri, Santanu
Creuziger, Adam
Hattrick‐Simpers, Jason
Thoma, Dan J.
Sridharan, Kumar
Couet, Adrien
Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
title Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
title_full Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
title_fullStr Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
title_full_unstemmed Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
title_short Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
title_sort integrated high‐throughput and machine learning methods to accelerate discovery of molten salt corrosion‐resistant alloys
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284150/
https://www.ncbi.nlm.nih.gov/pubmed/35524640
http://dx.doi.org/10.1002/advs.202200370
work_keys_str_mv AT wangyafei integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT gohbonita integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT nelaturuphalgun integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT duongthien integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT hassannajlaa integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT davidraphaelle integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT mooreheadmichael integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT chaudhurisantanu integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT creuzigeradam integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT hattricksimpersjason integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT thomadanj integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT sridharankumar integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys
AT couetadrien integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys