Cargando…
Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys
Insufficient availability of molten salt corrosion‐resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understandi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284150/ https://www.ncbi.nlm.nih.gov/pubmed/35524640 http://dx.doi.org/10.1002/advs.202200370 |
_version_ | 1784747499860262912 |
---|---|
author | Wang, Yafei Goh, Bonita Nelaturu, Phalgun Duong, Thien Hassan, Najlaa David, Raphaelle Moorehead, Michael Chaudhuri, Santanu Creuziger, Adam Hattrick‐Simpers, Jason Thoma, Dan J. Sridharan, Kumar Couet, Adrien |
author_facet | Wang, Yafei Goh, Bonita Nelaturu, Phalgun Duong, Thien Hassan, Najlaa David, Raphaelle Moorehead, Michael Chaudhuri, Santanu Creuziger, Adam Hattrick‐Simpers, Jason Thoma, Dan J. Sridharan, Kumar Couet, Adrien |
author_sort | Wang, Yafei |
collection | PubMed |
description | Insufficient availability of molten salt corrosion‐resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here an integrated approach is presented using a set of high‐throughput (HTP) alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of Cr—Fe—Mn—Ni alloys are evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion‐resistant alloy development can be accelerated by 2 to 3 orders of magnitude. Based on the obtained results, a sacrificial protection mechanism is unveiled in the corrosion of Cr—Fe—Mn—Ni alloys in molten salts which can be applied to protect the less unstable elements in the alloy from being depleted, and provided new insights on the design of high‐temperature molten salt corrosion‐resistant alloys. |
format | Online Article Text |
id | pubmed-9284150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92841502022-07-15 Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys Wang, Yafei Goh, Bonita Nelaturu, Phalgun Duong, Thien Hassan, Najlaa David, Raphaelle Moorehead, Michael Chaudhuri, Santanu Creuziger, Adam Hattrick‐Simpers, Jason Thoma, Dan J. Sridharan, Kumar Couet, Adrien Adv Sci (Weinh) Research Articles Insufficient availability of molten salt corrosion‐resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here an integrated approach is presented using a set of high‐throughput (HTP) alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of Cr—Fe—Mn—Ni alloys are evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion‐resistant alloy development can be accelerated by 2 to 3 orders of magnitude. Based on the obtained results, a sacrificial protection mechanism is unveiled in the corrosion of Cr—Fe—Mn—Ni alloys in molten salts which can be applied to protect the less unstable elements in the alloy from being depleted, and provided new insights on the design of high‐temperature molten salt corrosion‐resistant alloys. John Wiley and Sons Inc. 2022-05-07 /pmc/articles/PMC9284150/ /pubmed/35524640 http://dx.doi.org/10.1002/advs.202200370 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Wang, Yafei Goh, Bonita Nelaturu, Phalgun Duong, Thien Hassan, Najlaa David, Raphaelle Moorehead, Michael Chaudhuri, Santanu Creuziger, Adam Hattrick‐Simpers, Jason Thoma, Dan J. Sridharan, Kumar Couet, Adrien Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys |
title | Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys |
title_full | Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys |
title_fullStr | Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys |
title_full_unstemmed | Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys |
title_short | Integrated High‐Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion‐Resistant Alloys |
title_sort | integrated high‐throughput and machine learning methods to accelerate discovery of molten salt corrosion‐resistant alloys |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284150/ https://www.ncbi.nlm.nih.gov/pubmed/35524640 http://dx.doi.org/10.1002/advs.202200370 |
work_keys_str_mv | AT wangyafei integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT gohbonita integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT nelaturuphalgun integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT duongthien integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT hassannajlaa integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT davidraphaelle integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT mooreheadmichael integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT chaudhurisantanu integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT creuzigeradam integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT hattricksimpersjason integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT thomadanj integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT sridharankumar integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys AT couetadrien integratedhighthroughputandmachinelearningmethodstoacceleratediscoveryofmoltensaltcorrosionresistantalloys |