Cargando…
D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data
A single-cell sequencing data set has always been a challenge for clustering because of its high dimension and multi-noise points. The traditional K-means algorithm is not suitable for this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-K-means clustering algorit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284269/ https://www.ncbi.nlm.nih.gov/pubmed/35846121 http://dx.doi.org/10.3389/fgene.2022.912711 |
_version_ | 1784747526227755008 |
---|---|
author | Liu, Guoyun Li, Manzhi Wang, Hongtao Lin, Shijun Xu, Junlin Li, Ruixi Tang, Min Li, Chun |
author_facet | Liu, Guoyun Li, Manzhi Wang, Hongtao Lin, Shijun Xu, Junlin Li, Ruixi Tang, Min Li, Chun |
author_sort | Liu, Guoyun |
collection | PubMed |
description | A single-cell sequencing data set has always been a challenge for clustering because of its high dimension and multi-noise points. The traditional K-means algorithm is not suitable for this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-K-means clustering algorithm. The algorithm adds the dynamic radius parameter to the calculation. It flexibly adjusts the active radius according to the data characteristics, which can eliminate the influence of noise points and optimize the clustering results. At the same time, the algorithm calculates the weight through the dissimilarity density of the data set, the average contrast of candidate clusters, and the dissimilarity of candidate clusters. It obtains a set of high-quality initial center points, which solves the randomness of the K-means algorithm in selecting the center points. Finally, compared with similar algorithms, this algorithm shows a better clustering effect on single-cell data. Each clustering index is higher than other single-cell clustering algorithms, which overcomes the shortcomings of the traditional K-means algorithm. |
format | Online Article Text |
id | pubmed-9284269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92842692022-07-16 D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data Liu, Guoyun Li, Manzhi Wang, Hongtao Lin, Shijun Xu, Junlin Li, Ruixi Tang, Min Li, Chun Front Genet Genetics A single-cell sequencing data set has always been a challenge for clustering because of its high dimension and multi-noise points. The traditional K-means algorithm is not suitable for this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-K-means clustering algorithm. The algorithm adds the dynamic radius parameter to the calculation. It flexibly adjusts the active radius according to the data characteristics, which can eliminate the influence of noise points and optimize the clustering results. At the same time, the algorithm calculates the weight through the dissimilarity density of the data set, the average contrast of candidate clusters, and the dissimilarity of candidate clusters. It obtains a set of high-quality initial center points, which solves the randomness of the K-means algorithm in selecting the center points. Finally, compared with similar algorithms, this algorithm shows a better clustering effect on single-cell data. Each clustering index is higher than other single-cell clustering algorithms, which overcomes the shortcomings of the traditional K-means algorithm. Frontiers Media S.A. 2022-07-01 /pmc/articles/PMC9284269/ /pubmed/35846121 http://dx.doi.org/10.3389/fgene.2022.912711 Text en Copyright © 2022 Liu, Li, Wang, Lin, Xu, Li, Tang and Li. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Liu, Guoyun Li, Manzhi Wang, Hongtao Lin, Shijun Xu, Junlin Li, Ruixi Tang, Min Li, Chun D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data |
title | D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data |
title_full | D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data |
title_fullStr | D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data |
title_full_unstemmed | D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data |
title_short | D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data |
title_sort | d3k: the dissimilarity-density-dynamic radius k-means clustering algorithm for scrna-seq data |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284269/ https://www.ncbi.nlm.nih.gov/pubmed/35846121 http://dx.doi.org/10.3389/fgene.2022.912711 |
work_keys_str_mv | AT liuguoyun d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT limanzhi d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT wanghongtao d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT linshijun d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT xujunlin d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT liruixi d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT tangmin d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata AT lichun d3kthedissimilaritydensitydynamicradiuskmeansclusteringalgorithmforscrnaseqdata |