Cargando…
D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data
A single-cell sequencing data set has always been a challenge for clustering because of its high dimension and multi-noise points. The traditional K-means algorithm is not suitable for this type of data. Therefore, this study proposes a Dissimilarity-Density-Dynamic Radius-K-means clustering algorit...
Autores principales: | Liu, Guoyun, Li, Manzhi, Wang, Hongtao, Lin, Shijun, Xu, Junlin, Li, Ruixi, Tang, Min, Li, Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284269/ https://www.ncbi.nlm.nih.gov/pubmed/35846121 http://dx.doi.org/10.3389/fgene.2022.912711 |
Ejemplares similares
-
Fast and memory-efficient scRNA-seq k-means clustering with various distances
por: Baker, Daniel N., et al.
Publicado: (2021) -
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
por: Zhao, Jianping, et al.
Publicado: (2021) -
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2019) -
Corrigendum: Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2020) -
RFCell: A Gene Selection Approach for scRNA-seq Clustering Based on Permutation and Random Forest
por: Zhao, Yuan, et al.
Publicado: (2021)