Cargando…
i-Modern: Integrated multi-omics network model identifies potential therapeutic targets in glioma by deep learning with interpretability
Effective and precise classification of glioma patients for their disease risks is critical to improving early diagnosis and patient survival. In the recent past, a significant amount of multi-omics data derived from cancer patients has emerged. However, a robust framework for integrating multi-omic...
Autores principales: | Pan, Xingxin, Burgman, Brandon, Wu, Erxi, Huang, Jason H., Sahni, Nidhi, Stephen Yi, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284388/ https://www.ncbi.nlm.nih.gov/pubmed/35860408 http://dx.doi.org/10.1016/j.csbj.2022.06.058 |
Ejemplares similares
-
AD-Syn-Net: systematic identification of Alzheimer’s disease-associated mutation and co-mutation vulnerabilities via deep learning
por: Pan, Xingxin, et al.
Publicado: (2023) -
Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease
por: Xu, Jielin, et al.
Publicado: (2022) -
e-MutPath: computational modeling reveals the functional landscape of genetic mutations rewiring interactome networks
por: Li, Yongsheng, et al.
Publicado: (2020) -
Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks
por: Lin, Shengda, et al.
Publicado: (2016) -
Multi-omics approach to identifying isoform variants as therapeutic targets in cancer patients
por: Shaw, Timothy I., et al.
Publicado: (2022)