Cargando…

Research progress of reduced amino acid alphabets in protein analysis and prediction

Proteins are the executors of cellular physiological activities, and accurate structural and function elucidation are crucial for the refined mapping of proteins. As a feature engineering method, the reduction of amino acid composition is not only an important method for protein structure and functi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yuchao, Yang, Siqi, Zheng, Lei, Wang, Hao, Zhou, Jian, Huang, Shenghui, Yang, Lei, Zuo, Yongchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284397/
https://www.ncbi.nlm.nih.gov/pubmed/35860409
http://dx.doi.org/10.1016/j.csbj.2022.07.001
Descripción
Sumario:Proteins are the executors of cellular physiological activities, and accurate structural and function elucidation are crucial for the refined mapping of proteins. As a feature engineering method, the reduction of amino acid composition is not only an important method for protein structure and function analysis, but also opens a broad horizon for the complex field of machine learning. Representing sequences with fewer amino acid types greatly reduces the complexity and noise of traditional feature engineering in dimension, and provides more interpretable predictive models for machine learning to capture key features. In this paper, we systematically reviewed the strategy and method studies of the reduced amino acid (RAA) alphabets, and summarized its main research in protein sequence alignment, functional classification, and prediction of structural properties, respectively. In the end, we gave a comprehensive analysis of 672 RAA alphabets from 74 reduction methods.