Cargando…
Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization
[Image: see text] Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years ha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284546/ https://www.ncbi.nlm.nih.gov/pubmed/35775744 http://dx.doi.org/10.1021/jacs.2c04262 |
_version_ | 1784747585468104704 |
---|---|
author | Schulte, Albert M. Alachouzos, Georgios Szymański, Wiktor Feringa, Ben L. |
author_facet | Schulte, Albert M. Alachouzos, Georgios Szymański, Wiktor Feringa, Ben L. |
author_sort | Schulte, Albert M. |
collection | PubMed |
description | [Image: see text] Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years have particularly focused on the development of molecules with high molar absorptivity at long irradiation wavelengths. However, a crucial parameter, which is pivotal to the efficiency of uncaging and which has until now proven highly challenging to improve, is the photolysis quantum yield (QY). Here, we describe a novel and general approach to greatly increase the photolysis QY of heterolytic PPGs through stabilization of an intermediate chromophore cation. When applied to coumarin PPGs, our strategy resulted in systems possessing an up to a 35-fold increase in QY and a convenient fluorescent readout during their uncaging, all while requiring the same number of synthetic steps for their preparation as the usual coumarin systems. We demonstrate that the same QY engineering strategy applies to different photolysis payloads and even different classes of PPGs. Furthermore, analysis of the DFT-calculated energy barriers in the first singlet excited state reveals valuable insights into the important factors that determine photolysis efficiency. The strategy reported herein will enable the development of efficient PPGs tailored for many applications. |
format | Online Article Text |
id | pubmed-9284546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92845462022-07-16 Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization Schulte, Albert M. Alachouzos, Georgios Szymański, Wiktor Feringa, Ben L. J Am Chem Soc [Image: see text] Photolabile protecting groups (PPGs) enable the precise activation of molecular function with light in many research areas, such as photopharmacology, where remote spatiotemporal control over the release of a molecule is needed. The design and application of PPGs in recent years have particularly focused on the development of molecules with high molar absorptivity at long irradiation wavelengths. However, a crucial parameter, which is pivotal to the efficiency of uncaging and which has until now proven highly challenging to improve, is the photolysis quantum yield (QY). Here, we describe a novel and general approach to greatly increase the photolysis QY of heterolytic PPGs through stabilization of an intermediate chromophore cation. When applied to coumarin PPGs, our strategy resulted in systems possessing an up to a 35-fold increase in QY and a convenient fluorescent readout during their uncaging, all while requiring the same number of synthetic steps for their preparation as the usual coumarin systems. We demonstrate that the same QY engineering strategy applies to different photolysis payloads and even different classes of PPGs. Furthermore, analysis of the DFT-calculated energy barriers in the first singlet excited state reveals valuable insights into the important factors that determine photolysis efficiency. The strategy reported herein will enable the development of efficient PPGs tailored for many applications. American Chemical Society 2022-07-01 2022-07-13 /pmc/articles/PMC9284546/ /pubmed/35775744 http://dx.doi.org/10.1021/jacs.2c04262 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Schulte, Albert M. Alachouzos, Georgios Szymański, Wiktor Feringa, Ben L. Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization |
title | Strategy
for Engineering High Photolysis Efficiency
of Photocleavable Protecting Groups through Cation Stabilization |
title_full | Strategy
for Engineering High Photolysis Efficiency
of Photocleavable Protecting Groups through Cation Stabilization |
title_fullStr | Strategy
for Engineering High Photolysis Efficiency
of Photocleavable Protecting Groups through Cation Stabilization |
title_full_unstemmed | Strategy
for Engineering High Photolysis Efficiency
of Photocleavable Protecting Groups through Cation Stabilization |
title_short | Strategy
for Engineering High Photolysis Efficiency
of Photocleavable Protecting Groups through Cation Stabilization |
title_sort | strategy
for engineering high photolysis efficiency
of photocleavable protecting groups through cation stabilization |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284546/ https://www.ncbi.nlm.nih.gov/pubmed/35775744 http://dx.doi.org/10.1021/jacs.2c04262 |
work_keys_str_mv | AT schultealbertm strategyforengineeringhighphotolysisefficiencyofphotocleavableprotectinggroupsthroughcationstabilization AT alachouzosgeorgios strategyforengineeringhighphotolysisefficiencyofphotocleavableprotectinggroupsthroughcationstabilization AT szymanskiwiktor strategyforengineeringhighphotolysisefficiencyofphotocleavableprotectinggroupsthroughcationstabilization AT feringabenl strategyforengineeringhighphotolysisefficiencyofphotocleavableprotectinggroupsthroughcationstabilization |