Cargando…
Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue
The cartilage repair and regeneration show inadequate self‐healing capability and have some complications, which are inordinate challenges in clinical therapy. Biopolymeric injectable hydrogels, a prominent type of cell‐carrier as well tissue engineering scaffolding materials, establish promising th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284642/ https://www.ncbi.nlm.nih.gov/pubmed/35266304 http://dx.doi.org/10.1111/iwj.13699 |
_version_ | 1784747608480153600 |
---|---|
author | Zheng, Dong Chen, Tong Han, Long Lv, Songwei Yin, Jianjian Yang, Kaiyuan Wang, Yuji Xu, Nanwei |
author_facet | Zheng, Dong Chen, Tong Han, Long Lv, Songwei Yin, Jianjian Yang, Kaiyuan Wang, Yuji Xu, Nanwei |
author_sort | Zheng, Dong |
collection | PubMed |
description | The cartilage repair and regeneration show inadequate self‐healing capability and have some complications, which are inordinate challenges in clinical therapy. Biopolymeric injectable hydrogels, a prominent type of cell‐carrier as well tissue engineering scaffolding materials, establish promising therapeutic potential of stem cell‐based cartilage‐regeneration treatment. In addition, injectable scaffolding biomaterial should have rapid gelation properties with adequate rheological and mechanical properties. In the present investigation, we developed and fabricated the macromolecular silk fibroin blended with polylysine modified chitosan polymer (SF/PCS) using thermal‐sensitive glycerophosphate (GP), which contains effective gelation ability, morphology, porosity and also has enhanced mechanical properties to induce physical applicability, cell proliferation and nutrient exchange in the cell‐based treatment. The developed and optimised injectable hydrogel group has good biocompatibility with human fibroblast (L929) cells and bone marrow‐derived mesenchymal stem cells (BMSCs). Additionally, it was found that SF/PCS hydrogel group could sustainably release TGF‐β1 and efficiently regulate cartilage‐specific and inflammatory‐related gene expressions. Finally, the cartilage‐regeneration potential of the hydrogel groups embedded with and without BMSCs were evaluated in SD rat models under histopathological analysis, which showed promising cartilage repair. Overall, we conclude that the TGF‐β1‐SF/PCS injectable hydrogel demonstrates enhanced in vitro and in vivo tissue regeneration properties, which lead to efficacious therapeutic potential in cartilage regeneration. |
format | Online Article Text |
id | pubmed-9284642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-92846422022-07-19 Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue Zheng, Dong Chen, Tong Han, Long Lv, Songwei Yin, Jianjian Yang, Kaiyuan Wang, Yuji Xu, Nanwei Int Wound J Original Articles The cartilage repair and regeneration show inadequate self‐healing capability and have some complications, which are inordinate challenges in clinical therapy. Biopolymeric injectable hydrogels, a prominent type of cell‐carrier as well tissue engineering scaffolding materials, establish promising therapeutic potential of stem cell‐based cartilage‐regeneration treatment. In addition, injectable scaffolding biomaterial should have rapid gelation properties with adequate rheological and mechanical properties. In the present investigation, we developed and fabricated the macromolecular silk fibroin blended with polylysine modified chitosan polymer (SF/PCS) using thermal‐sensitive glycerophosphate (GP), which contains effective gelation ability, morphology, porosity and also has enhanced mechanical properties to induce physical applicability, cell proliferation and nutrient exchange in the cell‐based treatment. The developed and optimised injectable hydrogel group has good biocompatibility with human fibroblast (L929) cells and bone marrow‐derived mesenchymal stem cells (BMSCs). Additionally, it was found that SF/PCS hydrogel group could sustainably release TGF‐β1 and efficiently regulate cartilage‐specific and inflammatory‐related gene expressions. Finally, the cartilage‐regeneration potential of the hydrogel groups embedded with and without BMSCs were evaluated in SD rat models under histopathological analysis, which showed promising cartilage repair. Overall, we conclude that the TGF‐β1‐SF/PCS injectable hydrogel demonstrates enhanced in vitro and in vivo tissue regeneration properties, which lead to efficacious therapeutic potential in cartilage regeneration. Blackwell Publishing Ltd 2022-03-09 /pmc/articles/PMC9284642/ /pubmed/35266304 http://dx.doi.org/10.1111/iwj.13699 Text en © 2022 The Authors. International Wound Journal published by Medicalhelplines.com Inc (3M) and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Zheng, Dong Chen, Tong Han, Long Lv, Songwei Yin, Jianjian Yang, Kaiyuan Wang, Yuji Xu, Nanwei Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
title | Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
title_full | Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
title_fullStr | Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
title_full_unstemmed | Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
title_short | Synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
title_sort | synergetic integrations of bone marrow stem cells and transforming growth factor‐β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284642/ https://www.ncbi.nlm.nih.gov/pubmed/35266304 http://dx.doi.org/10.1111/iwj.13699 |
work_keys_str_mv | AT zhengdong synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT chentong synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT hanlong synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT lvsongwei synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT yinjianjian synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT yangkaiyuan synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT wangyuji synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue AT xunanwei synergeticintegrationsofbonemarrowstemcellsandtransforminggrowthfactorb1loadedchitosannanoparticlesblendedsilkfibroininjectablehydrogeltoenhancerepairandregenerationpotentialinarticularcartilagetissue |