Cargando…
Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality
BACKGROUND: The constant evolving and development of next-generation sequencing techniques lead to high throughput data composed of datasets that include a large number of biological samples. Although a large number of samples are usually experimentally processed by batches, scientific publications...
Autores principales: | Sprang, Maximilian, Andrade-Navarro, Miguel A., Fontaine, Jean-Fred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284682/ https://www.ncbi.nlm.nih.gov/pubmed/35836114 http://dx.doi.org/10.1186/s12859-022-04775-y |
Ejemplares similares
-
seqQscorer: automated quality control of next-generation sequencing data using machine learning
por: Albrecht, Steffen, et al.
Publicado: (2021) -
Statistical guidelines for quality control of next-generation sequencing techniques
por: Sprang, Maximilian, et al.
Publicado: (2021) -
Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation
por: Albrecht, Steffen, et al.
Publicado: (2022) -
Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
por: Chazarra-Gil, Ruben, et al.
Publicado: (2021) -
Computational identification of cell-specific variable regions in ChIP-seq data
por: Andreani, Tommaso, et al.
Publicado: (2020)