Cargando…

Impaired time-distance reconfiguration patterns in Alzheimer's disease: a dynamic functional connectivity study with 809 individuals from 7 sites

BACKGROUND: The dynamic functional connectivity (dFC) has been used successfully to investigate the dysfunction of Alzheimer's disease (AD) patients. The reconfiguration intensity of nodal dFC, which means the degree of alteration between FCs at different time scales, could provide additional i...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Kai, Chen, Pindong, Zhao, Kun, Qu, Yida, Kang, Xiaopeng, Liu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284684/
https://www.ncbi.nlm.nih.gov/pubmed/35836122
http://dx.doi.org/10.1186/s12859-022-04776-x
Descripción
Sumario:BACKGROUND: The dynamic functional connectivity (dFC) has been used successfully to investigate the dysfunction of Alzheimer's disease (AD) patients. The reconfiguration intensity of nodal dFC, which means the degree of alteration between FCs at different time scales, could provide additional information for understanding the reconfiguration of brain connectivity. RESULTS: In this paper, we introduced a feature named time distance nodal connectivity diversity (tdNCD), and then evaluated the network reconfiguration intensity in every specific brain region in AD using a large multicenter dataset (N = 809 from 7 independent sites). Our results showed that the dysfunction involved in three subnetworks in AD, including the default mode network (DMN), the subcortical network (SCN), and the cerebellum network (CBN). The nodal tdNCD inside the DMN increased in AD compared to normal controls, and the nodal dynamic FC of the SCN and the CBN decreased in AD. Additionally, the classification analysis showed that the classification performance was better when combined tdNCD and FC to classify AD from normal control (ACC = 81%, SEN = 83.4%, SPE = 80.6%, and F1-score = 79.4%) than that only using FC (ACC = 78.2%, SEN = 76.2%, SPE = 76.5%, and F1-score = 77.5%) with a leave-one-site-out cross-validation. Besides, the performance of the three classes classification was improved from 50% (only using FC) to 53.3% (combined FC and tdNCD) (macro F1-score accuracy from 46.8 to 48.9%). More importantly, the classification model showed significant clinically predictive correlations (two classes classification: R = −0.38, P < 0.001; three classes classification: R = −0.404, P < 0.001). More importantly, several commonly used machine learning models confirmed that the tdNCD would provide additional information for classifying AD from normal controls. CONCLUSIONS: The present study demonstrated dynamic reconfiguration of nodal FC abnormities in AD. The tdNCD highlights the potential for further understanding core mechanisms of brain dysfunction in AD. Evaluating the tdNCD FC provides a promising way to understand AD processes better and investigate novel diagnostic brain imaging biomarkers for AD.