Cargando…
Use data augmentation for a deep learning classification model with chest X-ray clinical imaging featuring coal workers' pneumoconiosis
PURPOSE: This paper aims to develop a successful deep learning model with data augmentation technique to discover the clinical uniqueness of chest X-ray imaging features of coal workers' pneumoconiosis (CWP). PATIENTS AND METHODS: We enrolled 149 CWP patients and 68 dust-exposure workers for a...
Autores principales: | Dong, Hantian, Zhu, Biaokai, Zhang, Xinri, Kong, Xiaomei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284687/ https://www.ncbi.nlm.nih.gov/pubmed/35840945 http://dx.doi.org/10.1186/s12890-022-02068-x |
Ejemplares similares
-
Efficient clinical data analysis for prediction of coal workers' pneumoconiosis using machine learning algorithms
por: Dong, Hantian, et al.
Publicado: (2023) -
Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-ray Radiography
por: Devnath, Liton, et al.
Publicado: (2022) -
Silicosis and coal workers' pneumoconiosis.
por: Castranova, V, et al.
Publicado: (2000) -
Computer-Aided Diagnosis of Coal Workers’ Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review
por: Devnath, Liton, et al.
Publicado: (2022) -
Prevalence and pathogenesis of pneumoconiosis in coal workers.
por: Heppleston, A G
Publicado: (1988)