Cargando…
Creating sparser prediction models of treatment outcome in depression: a proof-of-concept study using simultaneous feature selection and hyperparameter tuning
BACKGROUND: Predicting treatment outcome in major depressive disorder (MDD) remains an essential challenge for precision psychiatry. Clinical prediction models (CPMs) based on supervised machine learning have been a promising approach for this endeavor. However, only few CPMs have focused on model s...
Autores principales: | Rost, Nicolas, Brückl, Tanja M., Koutsouleris, Nikolaos, Binder, Elisabeth B., Müller-Myhsok, Bertram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284749/ https://www.ncbi.nlm.nih.gov/pubmed/35836174 http://dx.doi.org/10.1186/s12911-022-01926-2 |
Ejemplares similares
-
Predicting treatment outcome in depression: an introduction into current concepts and challenges
por: Rost, Nicolas, et al.
Publicado: (2022) -
A Hyperparameter Tuning Approach for an Online Log Parser
por: Marlaithong, Tinnakorn, et al.
Publicado: (2021) -
Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex
por: Yin, Siyang, et al.
Publicado: (2020) -
Consequences and opportunities arising due to sparser single-cell RNA-seq datasets
por: Bouland, Gerard A., et al.
Publicado: (2023) -
Systematic Review of Functional MRI Applications for Psychiatric Disease Subtyping
por: Miranda, Lucas, et al.
Publicado: (2021)