Cargando…
Predicting protein network topology clusters from chemical structure using deep learning
Comparing chemical structures to infer protein targets and functions is a common approach, but basing comparisons on chemical similarity alone can be misleading. Here we present a methodology for predicting target protein clusters using deep neural networks. The model is trained on clusters of compo...
Autores principales: | Sreenivasan, Akshai P., Harrison, Philip J, Schaal, Wesley, Matuszewski, Damian J., Kultima, Kim, Spjuth, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284831/ https://www.ncbi.nlm.nih.gov/pubmed/35841114 http://dx.doi.org/10.1186/s13321-022-00622-7 |
Ejemplares similares
-
Automated QuantMap for rapid quantitative molecular network topology analysis
por: Schaal, Wesley, et al.
Publicado: (2013) -
Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
por: Kensert, Alexander, et al.
Publicado: (2019) -
Tracking the NGS revolution: managing life science research on shared high-performance computing clusters
por: Dahlö, Martin, et al.
Publicado: (2018) -
Large-scale virtual screening on public cloud resources with Apache Spark
por: Capuccini, Marco, et al.
Publicado: (2017) -
Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing–Remitting Multiple Sclerosis
por: Herman, Stephanie, et al.
Publicado: (2019)