Cargando…
Respect, justice and learning are limited when patients are deidentified data subjects
INTRODUCTION: Critical for advancing a Learning Health System (LHS) in the U.S., a regulatory safe harbor for deidentified data reduces barriers to learning from care at scale while minimizing privacy risks. We examine deidentified data policy as a mechanism for synthesizing the ethical obligations...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284924/ https://www.ncbi.nlm.nih.gov/pubmed/35860318 http://dx.doi.org/10.1002/lrh2.10303 |
_version_ | 1784747669904687104 |
---|---|
author | Gross, Marielle S. Hood, Amelia J. Rubin, Joshua C. Miller, Robert C. |
author_facet | Gross, Marielle S. Hood, Amelia J. Rubin, Joshua C. Miller, Robert C. |
author_sort | Gross, Marielle S. |
collection | PubMed |
description | INTRODUCTION: Critical for advancing a Learning Health System (LHS) in the U.S., a regulatory safe harbor for deidentified data reduces barriers to learning from care at scale while minimizing privacy risks. We examine deidentified data policy as a mechanism for synthesizing the ethical obligations underlying clinical care and human subjects research for an LHS which conceptually and practically integrates care and research, blurring the roles of patient and subject. METHODS: First, we discuss respect for persons vis‐a‐vis the systemic secondary use of data and tissue collected in the fiduciary context of clinical care. We argue that, without traditional informed consent or duty to benefit the individual, deidentification may allow secondary use to supersede the primary purpose of care. Next, we consider the effectiveness of deidentification for minimizing harms via privacy protection and maximizing benefits via promoting learning and translational care. We find that deidentification is unable to fully protect privacy given the vastness of health data and current technology, yet it imposes limitations to learning and barriers for efficient translation. After that, we evaluate the impact of deidentification on distributive justice within an LHS ethical framework in which patients are obligated to contribute to learning and the system has a duty to translate knowledge into better care. Such a system may permit exacerbation of health disparities as it accelerates learning without mechanisms to ensure that individuals' contributions and benefits are fair and balanced. RESULTS: We find that, despite its established advantages, system‐wide use of deidentification may be suboptimal for signaling respect, protecting privacy or promoting learning, and satisfying requirements of justice for patients and subjects. CONCLUSIONS: Finally, we highlight ethical, socioeconomic, technological and legal challenges and next steps, including a critical appreciation for novel approaches to realize an LHS that maximizes efficient, effective learning and just translation without the compromises of deidentification. |
format | Online Article Text |
id | pubmed-9284924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92849242022-07-19 Respect, justice and learning are limited when patients are deidentified data subjects Gross, Marielle S. Hood, Amelia J. Rubin, Joshua C. Miller, Robert C. Learn Health Syst Policy Analyses INTRODUCTION: Critical for advancing a Learning Health System (LHS) in the U.S., a regulatory safe harbor for deidentified data reduces barriers to learning from care at scale while minimizing privacy risks. We examine deidentified data policy as a mechanism for synthesizing the ethical obligations underlying clinical care and human subjects research for an LHS which conceptually and practically integrates care and research, blurring the roles of patient and subject. METHODS: First, we discuss respect for persons vis‐a‐vis the systemic secondary use of data and tissue collected in the fiduciary context of clinical care. We argue that, without traditional informed consent or duty to benefit the individual, deidentification may allow secondary use to supersede the primary purpose of care. Next, we consider the effectiveness of deidentification for minimizing harms via privacy protection and maximizing benefits via promoting learning and translational care. We find that deidentification is unable to fully protect privacy given the vastness of health data and current technology, yet it imposes limitations to learning and barriers for efficient translation. After that, we evaluate the impact of deidentification on distributive justice within an LHS ethical framework in which patients are obligated to contribute to learning and the system has a duty to translate knowledge into better care. Such a system may permit exacerbation of health disparities as it accelerates learning without mechanisms to ensure that individuals' contributions and benefits are fair and balanced. RESULTS: We find that, despite its established advantages, system‐wide use of deidentification may be suboptimal for signaling respect, protecting privacy or promoting learning, and satisfying requirements of justice for patients and subjects. CONCLUSIONS: Finally, we highlight ethical, socioeconomic, technological and legal challenges and next steps, including a critical appreciation for novel approaches to realize an LHS that maximizes efficient, effective learning and just translation without the compromises of deidentification. John Wiley and Sons Inc. 2022-03-04 /pmc/articles/PMC9284924/ /pubmed/35860318 http://dx.doi.org/10.1002/lrh2.10303 Text en © 2022 The Authors. Learning Health Systems published by Wiley Periodicals LLC on behalf of University of Michigan. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Policy Analyses Gross, Marielle S. Hood, Amelia J. Rubin, Joshua C. Miller, Robert C. Respect, justice and learning are limited when patients are deidentified data subjects |
title | Respect, justice and learning are limited when patients are deidentified data subjects |
title_full | Respect, justice and learning are limited when patients are deidentified data subjects |
title_fullStr | Respect, justice and learning are limited when patients are deidentified data subjects |
title_full_unstemmed | Respect, justice and learning are limited when patients are deidentified data subjects |
title_short | Respect, justice and learning are limited when patients are deidentified data subjects |
title_sort | respect, justice and learning are limited when patients are deidentified data subjects |
topic | Policy Analyses |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284924/ https://www.ncbi.nlm.nih.gov/pubmed/35860318 http://dx.doi.org/10.1002/lrh2.10303 |
work_keys_str_mv | AT grossmarielles respectjusticeandlearningarelimitedwhenpatientsaredeidentifieddatasubjects AT hoodameliaj respectjusticeandlearningarelimitedwhenpatientsaredeidentifieddatasubjects AT rubinjoshuac respectjusticeandlearningarelimitedwhenpatientsaredeidentifieddatasubjects AT millerrobertc respectjusticeandlearningarelimitedwhenpatientsaredeidentifieddatasubjects |