Cargando…

Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging

BACKGROUND: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic re...

Descripción completa

Detalles Bibliográficos
Autores principales: Campwala, Zahabiya, Szewczyk, Benjamin, Maietta, Teresa, Trowbridge, Rachel, Tarasek, Matthew, Bhushan, Chitresh, Fiveland, Eric, Ghoshal, Goutam, Heffter, Tamas, Gandomi, Katie, Carvalho, Paulo Alberto, Nycz, Christopher, Jeannotte, Erin, Staudt, Michael, Nalwalk, Julia, Hellman, Abigail, Zhao, Zhanyue, Burdette, E. Clif, Fischer, Gregory, Yeo, Desmond, Pilitsis, Julie G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284994/
https://www.ncbi.nlm.nih.gov/pubmed/34148489
http://dx.doi.org/10.1080/02656736.2021.1936215
_version_ 1784747685344968704
author Campwala, Zahabiya
Szewczyk, Benjamin
Maietta, Teresa
Trowbridge, Rachel
Tarasek, Matthew
Bhushan, Chitresh
Fiveland, Eric
Ghoshal, Goutam
Heffter, Tamas
Gandomi, Katie
Carvalho, Paulo Alberto
Nycz, Christopher
Jeannotte, Erin
Staudt, Michael
Nalwalk, Julia
Hellman, Abigail
Zhao, Zhanyue
Burdette, E. Clif
Fischer, Gregory
Yeo, Desmond
Pilitsis, Julie G.
author_facet Campwala, Zahabiya
Szewczyk, Benjamin
Maietta, Teresa
Trowbridge, Rachel
Tarasek, Matthew
Bhushan, Chitresh
Fiveland, Eric
Ghoshal, Goutam
Heffter, Tamas
Gandomi, Katie
Carvalho, Paulo Alberto
Nycz, Christopher
Jeannotte, Erin
Staudt, Michael
Nalwalk, Julia
Hellman, Abigail
Zhao, Zhanyue
Burdette, E. Clif
Fischer, Gregory
Yeo, Desmond
Pilitsis, Julie G.
author_sort Campwala, Zahabiya
collection PubMed
description BACKGROUND: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods. OBJECTIVE: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU. METHODS: Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes. RESULTS: Data from the initial and third swine’s ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from −0.149 cm(3) to 0.252 cm(3) with a mean difference of 0.052 ±0.042 cm(3) (11.1%). There was a high correlation between the MRTI and histology volumes (r(2) = 0.831) with a strong linear relationship (r = 0.868). CONCLUSION: We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting.
format Online
Article
Text
id pubmed-9284994
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-92849942022-07-15 Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging Campwala, Zahabiya Szewczyk, Benjamin Maietta, Teresa Trowbridge, Rachel Tarasek, Matthew Bhushan, Chitresh Fiveland, Eric Ghoshal, Goutam Heffter, Tamas Gandomi, Katie Carvalho, Paulo Alberto Nycz, Christopher Jeannotte, Erin Staudt, Michael Nalwalk, Julia Hellman, Abigail Zhao, Zhanyue Burdette, E. Clif Fischer, Gregory Yeo, Desmond Pilitsis, Julie G. Int J Hyperthermia Article BACKGROUND: High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods. OBJECTIVE: To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU. METHODS: Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes. RESULTS: Data from the initial and third swine’s ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from −0.149 cm(3) to 0.252 cm(3) with a mean difference of 0.052 ±0.042 cm(3) (11.1%). There was a high correlation between the MRTI and histology volumes (r(2) = 0.831) with a strong linear relationship (r = 0.868). CONCLUSION: We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting. 2021 /pmc/articles/PMC9284994/ /pubmed/34148489 http://dx.doi.org/10.1080/02656736.2021.1936215 Text en https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Campwala, Zahabiya
Szewczyk, Benjamin
Maietta, Teresa
Trowbridge, Rachel
Tarasek, Matthew
Bhushan, Chitresh
Fiveland, Eric
Ghoshal, Goutam
Heffter, Tamas
Gandomi, Katie
Carvalho, Paulo Alberto
Nycz, Christopher
Jeannotte, Erin
Staudt, Michael
Nalwalk, Julia
Hellman, Abigail
Zhao, Zhanyue
Burdette, E. Clif
Fischer, Gregory
Yeo, Desmond
Pilitsis, Julie G.
Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging
title Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging
title_full Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging
title_fullStr Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging
title_full_unstemmed Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging
title_short Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging
title_sort predicting ablation zones with multislice volumetric 2-d magnetic resonance thermal imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284994/
https://www.ncbi.nlm.nih.gov/pubmed/34148489
http://dx.doi.org/10.1080/02656736.2021.1936215
work_keys_str_mv AT campwalazahabiya predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT szewczykbenjamin predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT maiettateresa predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT trowbridgerachel predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT tarasekmatthew predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT bhushanchitresh predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT fivelanderic predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT ghoshalgoutam predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT hefftertamas predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT gandomikatie predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT carvalhopauloalberto predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT nyczchristopher predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT jeannotteerin predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT staudtmichael predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT nalwalkjulia predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT hellmanabigail predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT zhaozhanyue predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT burdetteeclif predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT fischergregory predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT yeodesmond predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging
AT pilitsisjulieg predictingablationzoneswithmultislicevolumetric2dmagneticresonancethermalimaging