Cargando…

Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models

Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the...

Descripción completa

Detalles Bibliográficos
Autores principales: Daher, Houraa, Arbic, Brian K., Williams, James G., Ansong, Joseph K., Boggs, Dale H., Müller, Malte, Schindelegger, Michael, Austermann, Jacqueline, Cornuelle, Bruce D., Crawford, Eliana B., Fringer, Oliver B., Lau, Harriet C. P., Lock, Simon J., Maloof, Adam C., Menemenlis, Dimitris, Mitrovica, Jerry X., Green, J. A. Mattias, Huber, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285098/
https://www.ncbi.nlm.nih.gov/pubmed/35846556
http://dx.doi.org/10.1029/2021JE006875
_version_ 1784747709245161472
author Daher, Houraa
Arbic, Brian K.
Williams, James G.
Ansong, Joseph K.
Boggs, Dale H.
Müller, Malte
Schindelegger, Michael
Austermann, Jacqueline
Cornuelle, Bruce D.
Crawford, Eliana B.
Fringer, Oliver B.
Lau, Harriet C. P.
Lock, Simon J.
Maloof, Adam C.
Menemenlis, Dimitris
Mitrovica, Jerry X.
Green, J. A. Mattias
Huber, Matthew
author_facet Daher, Houraa
Arbic, Brian K.
Williams, James G.
Ansong, Joseph K.
Boggs, Dale H.
Müller, Malte
Schindelegger, Michael
Austermann, Jacqueline
Cornuelle, Bruce D.
Crawford, Eliana B.
Fringer, Oliver B.
Lau, Harriet C. P.
Lock, Simon J.
Maloof, Adam C.
Menemenlis, Dimitris
Mitrovica, Jerry X.
Green, J. A. Mattias
Huber, Matthew
author_sort Daher, Houraa
collection PubMed
description Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and [Formula: see text] rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded [Formula: see text] rate due to a closer Moon. Prior to [Formula: see text] , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
format Online
Article
Text
id pubmed-9285098
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92850982022-07-15 Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models Daher, Houraa Arbic, Brian K. Williams, James G. Ansong, Joseph K. Boggs, Dale H. Müller, Malte Schindelegger, Michael Austermann, Jacqueline Cornuelle, Bruce D. Crawford, Eliana B. Fringer, Oliver B. Lau, Harriet C. P. Lock, Simon J. Maloof, Adam C. Menemenlis, Dimitris Mitrovica, Jerry X. Green, J. A. Mattias Huber, Matthew J Geophys Res Planets Research Article Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and [Formula: see text] rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded [Formula: see text] rate due to a closer Moon. Prior to [Formula: see text] , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. John Wiley and Sons Inc. 2021-12-01 2021-12 /pmc/articles/PMC9285098/ /pubmed/35846556 http://dx.doi.org/10.1029/2021JE006875 Text en © 2021. The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Daher, Houraa
Arbic, Brian K.
Williams, James G.
Ansong, Joseph K.
Boggs, Dale H.
Müller, Malte
Schindelegger, Michael
Austermann, Jacqueline
Cornuelle, Bruce D.
Crawford, Eliana B.
Fringer, Oliver B.
Lau, Harriet C. P.
Lock, Simon J.
Maloof, Adam C.
Menemenlis, Dimitris
Mitrovica, Jerry X.
Green, J. A. Mattias
Huber, Matthew
Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
title Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
title_full Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
title_fullStr Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
title_full_unstemmed Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
title_short Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
title_sort long‐term earth‐moon evolution with high‐level orbit and ocean tide models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285098/
https://www.ncbi.nlm.nih.gov/pubmed/35846556
http://dx.doi.org/10.1029/2021JE006875
work_keys_str_mv AT daherhouraa longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT arbicbriank longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT williamsjamesg longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT ansongjosephk longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT boggsdaleh longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT mullermalte longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT schindeleggermichael longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT austermannjacqueline longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT cornuellebruced longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT crawfordelianab longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT fringeroliverb longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT lauharrietcp longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT locksimonj longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT maloofadamc longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT menemenlisdimitris longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT mitrovicajerryx longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT greenjamattias longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels
AT hubermatthew longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels