Cargando…
Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285098/ https://www.ncbi.nlm.nih.gov/pubmed/35846556 http://dx.doi.org/10.1029/2021JE006875 |
_version_ | 1784747709245161472 |
---|---|
author | Daher, Houraa Arbic, Brian K. Williams, James G. Ansong, Joseph K. Boggs, Dale H. Müller, Malte Schindelegger, Michael Austermann, Jacqueline Cornuelle, Bruce D. Crawford, Eliana B. Fringer, Oliver B. Lau, Harriet C. P. Lock, Simon J. Maloof, Adam C. Menemenlis, Dimitris Mitrovica, Jerry X. Green, J. A. Mattias Huber, Matthew |
author_facet | Daher, Houraa Arbic, Brian K. Williams, James G. Ansong, Joseph K. Boggs, Dale H. Müller, Malte Schindelegger, Michael Austermann, Jacqueline Cornuelle, Bruce D. Crawford, Eliana B. Fringer, Oliver B. Lau, Harriet C. P. Lock, Simon J. Maloof, Adam C. Menemenlis, Dimitris Mitrovica, Jerry X. Green, J. A. Mattias Huber, Matthew |
author_sort | Daher, Houraa |
collection | PubMed |
description | Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and [Formula: see text] rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded [Formula: see text] rate due to a closer Moon. Prior to [Formula: see text] , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. |
format | Online Article Text |
id | pubmed-9285098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92850982022-07-15 Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models Daher, Houraa Arbic, Brian K. Williams, James G. Ansong, Joseph K. Boggs, Dale H. Müller, Malte Schindelegger, Michael Austermann, Jacqueline Cornuelle, Bruce D. Crawford, Eliana B. Fringer, Oliver B. Lau, Harriet C. P. Lock, Simon J. Maloof, Adam C. Menemenlis, Dimitris Mitrovica, Jerry X. Green, J. A. Mattias Huber, Matthew J Geophys Res Planets Research Article Tides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows [Formula: see text] rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and [Formula: see text] rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded [Formula: see text] rate due to a closer Moon. Prior to [Formula: see text] , evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation. John Wiley and Sons Inc. 2021-12-01 2021-12 /pmc/articles/PMC9285098/ /pubmed/35846556 http://dx.doi.org/10.1029/2021JE006875 Text en © 2021. The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Daher, Houraa Arbic, Brian K. Williams, James G. Ansong, Joseph K. Boggs, Dale H. Müller, Malte Schindelegger, Michael Austermann, Jacqueline Cornuelle, Bruce D. Crawford, Eliana B. Fringer, Oliver B. Lau, Harriet C. P. Lock, Simon J. Maloof, Adam C. Menemenlis, Dimitris Mitrovica, Jerry X. Green, J. A. Mattias Huber, Matthew Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
title | Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
title_full | Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
title_fullStr | Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
title_full_unstemmed | Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
title_short | Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models |
title_sort | long‐term earth‐moon evolution with high‐level orbit and ocean tide models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285098/ https://www.ncbi.nlm.nih.gov/pubmed/35846556 http://dx.doi.org/10.1029/2021JE006875 |
work_keys_str_mv | AT daherhouraa longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT arbicbriank longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT williamsjamesg longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT ansongjosephk longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT boggsdaleh longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT mullermalte longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT schindeleggermichael longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT austermannjacqueline longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT cornuellebruced longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT crawfordelianab longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT fringeroliverb longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT lauharrietcp longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT locksimonj longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT maloofadamc longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT menemenlisdimitris longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT mitrovicajerryx longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT greenjamattias longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels AT hubermatthew longtermearthmoonevolutionwithhighlevelorbitandoceantidemodels |