Cargando…

Tropical Peatland Hydrology Simulated With a Global Land Surface Model

Tropical peatlands are among the most carbon‐dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface model...

Descripción completa

Detalles Bibliográficos
Autores principales: Apers, S., De Lannoy, G. J. M., Baird, A. J., Cobb, A. R., Dargie, G. C., del Aguila Pasquel, J., Gruber, A., Hastie, A., Hidayat, H., Hirano, T., Hoyt, A. M., Jovani‐Sancho, A. J., Katimon, A., Kurnain, A., Koster, R. D., Lampela, M., Mahanama, S. P. P., Melling, L., Page, S. E., Reichle, R. H., Taufik, M., Vanderborght, J., Bechtold, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285420/
https://www.ncbi.nlm.nih.gov/pubmed/35860446
http://dx.doi.org/10.1029/2021MS002784
_version_ 1784747775913623552
author Apers, S.
De Lannoy, G. J. M.
Baird, A. J.
Cobb, A. R.
Dargie, G. C.
del Aguila Pasquel, J.
Gruber, A.
Hastie, A.
Hidayat, H.
Hirano, T.
Hoyt, A. M.
Jovani‐Sancho, A. J.
Katimon, A.
Kurnain, A.
Koster, R. D.
Lampela, M.
Mahanama, S. P. P.
Melling, L.
Page, S. E.
Reichle, R. H.
Taufik, M.
Vanderborght, J.
Bechtold, M.
author_facet Apers, S.
De Lannoy, G. J. M.
Baird, A. J.
Cobb, A. R.
Dargie, G. C.
del Aguila Pasquel, J.
Gruber, A.
Hastie, A.
Hidayat, H.
Hirano, T.
Hoyt, A. M.
Jovani‐Sancho, A. J.
Katimon, A.
Kurnain, A.
Koster, R. D.
Lampela, M.
Mahanama, S. P. P.
Melling, L.
Page, S. E.
Reichle, R. H.
Taufik, M.
Vanderborght, J.
Bechtold, M.
author_sort Apers, S.
collection PubMed
description Tropical peatlands are among the most carbon‐dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface models (LSMs). Here, we integrated tropical peat‐specific hydrology modules into a global LSM for the first time, by utilizing the peatland‐specific model structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM). We developed literature‐based parameter sets for natural (PEATCLSM(Trop,Nat)) and drained (PEATCLSM(Trop,Drain)) tropical peatlands. Simulations with PEATCLSM(Trop,Nat) were compared against those with the default CLSM version and the northern version of PEATCLSM (PEATCLSM(North,Nat)) with tropical vegetation input. All simulations were forced with global meteorological reanalysis input data for the major tropical peatland regions in Central and South America, the Congo Basin, and Southeast Asia. The evaluation against a unique and extensive data set of in situ water level and eddy covariance‐derived evapotranspiration showed an overall improvement in bias and correlation compared to the default CLSM version. Over Southeast Asia, an additional simulation with PEATCLSM(Trop,Drain) was run to address the large fraction of drained tropical peatlands in this region. PEATCLSM(Trop,Drain) outperformed CLSM, PEATCLSM(North,Nat), and PEATCLSM(Trop,Nat) over drained sites. Despite the overall improvements of PEATCLSM(Trop,Nat) over CLSM, there are strong differences in performance between the three study regions. We attribute these performance differences to regional differences in accuracy of meteorological forcing data, and differences in peatland hydrologic response that are not yet captured by our model.
format Online
Article
Text
id pubmed-9285420
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92854202022-07-18 Tropical Peatland Hydrology Simulated With a Global Land Surface Model Apers, S. De Lannoy, G. J. M. Baird, A. J. Cobb, A. R. Dargie, G. C. del Aguila Pasquel, J. Gruber, A. Hastie, A. Hidayat, H. Hirano, T. Hoyt, A. M. Jovani‐Sancho, A. J. Katimon, A. Kurnain, A. Koster, R. D. Lampela, M. Mahanama, S. P. P. Melling, L. Page, S. E. Reichle, R. H. Taufik, M. Vanderborght, J. Bechtold, M. J Adv Model Earth Syst Research Article Tropical peatlands are among the most carbon‐dense ecosystems on Earth, and their water storage dynamics strongly control these carbon stocks. The hydrological functioning of tropical peatlands differs from that of northern peatlands, which has not yet been accounted for in global land surface models (LSMs). Here, we integrated tropical peat‐specific hydrology modules into a global LSM for the first time, by utilizing the peatland‐specific model structure adaptation (PEATCLSM) of the NASA Catchment Land Surface Model (CLSM). We developed literature‐based parameter sets for natural (PEATCLSM(Trop,Nat)) and drained (PEATCLSM(Trop,Drain)) tropical peatlands. Simulations with PEATCLSM(Trop,Nat) were compared against those with the default CLSM version and the northern version of PEATCLSM (PEATCLSM(North,Nat)) with tropical vegetation input. All simulations were forced with global meteorological reanalysis input data for the major tropical peatland regions in Central and South America, the Congo Basin, and Southeast Asia. The evaluation against a unique and extensive data set of in situ water level and eddy covariance‐derived evapotranspiration showed an overall improvement in bias and correlation compared to the default CLSM version. Over Southeast Asia, an additional simulation with PEATCLSM(Trop,Drain) was run to address the large fraction of drained tropical peatlands in this region. PEATCLSM(Trop,Drain) outperformed CLSM, PEATCLSM(North,Nat), and PEATCLSM(Trop,Nat) over drained sites. Despite the overall improvements of PEATCLSM(Trop,Nat) over CLSM, there are strong differences in performance between the three study regions. We attribute these performance differences to regional differences in accuracy of meteorological forcing data, and differences in peatland hydrologic response that are not yet captured by our model. John Wiley and Sons Inc. 2022-02-28 2022-03 /pmc/articles/PMC9285420/ /pubmed/35860446 http://dx.doi.org/10.1029/2021MS002784 Text en © 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Apers, S.
De Lannoy, G. J. M.
Baird, A. J.
Cobb, A. R.
Dargie, G. C.
del Aguila Pasquel, J.
Gruber, A.
Hastie, A.
Hidayat, H.
Hirano, T.
Hoyt, A. M.
Jovani‐Sancho, A. J.
Katimon, A.
Kurnain, A.
Koster, R. D.
Lampela, M.
Mahanama, S. P. P.
Melling, L.
Page, S. E.
Reichle, R. H.
Taufik, M.
Vanderborght, J.
Bechtold, M.
Tropical Peatland Hydrology Simulated With a Global Land Surface Model
title Tropical Peatland Hydrology Simulated With a Global Land Surface Model
title_full Tropical Peatland Hydrology Simulated With a Global Land Surface Model
title_fullStr Tropical Peatland Hydrology Simulated With a Global Land Surface Model
title_full_unstemmed Tropical Peatland Hydrology Simulated With a Global Land Surface Model
title_short Tropical Peatland Hydrology Simulated With a Global Land Surface Model
title_sort tropical peatland hydrology simulated with a global land surface model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285420/
https://www.ncbi.nlm.nih.gov/pubmed/35860446
http://dx.doi.org/10.1029/2021MS002784
work_keys_str_mv AT aperss tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT delannoygjm tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT bairdaj tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT cobbar tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT dargiegc tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT delaguilapasquelj tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT grubera tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT hastiea tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT hidayath tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT hiranot tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT hoytam tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT jovanisanchoaj tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT katimona tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT kurnaina tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT kosterrd tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT lampelam tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT mahanamaspp tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT mellingl tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT pagese tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT reichlerh tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT taufikm tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT vanderborghtj tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel
AT bechtoldm tropicalpeatlandhydrologysimulatedwithagloballandsurfacemodel