Cargando…

Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy

Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ec...

Descripción completa

Detalles Bibliográficos
Autores principales: Thompson, David R., Bohn, Niklas, Brodrick, Philip G., Carmon, Nimrod, Eastwood, Michael L., Eckert, Regina, Fichot, Cédric G., Harringmeyer, Joshua P., Nguyen, Hai M., Simard, Marc, Thorpe, Andrew K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285454/
https://www.ncbi.nlm.nih.gov/pubmed/35859986
http://dx.doi.org/10.1029/2021JG006711
_version_ 1784747784169062400
author Thompson, David R.
Bohn, Niklas
Brodrick, Philip G.
Carmon, Nimrod
Eastwood, Michael L.
Eckert, Regina
Fichot, Cédric G.
Harringmeyer, Joshua P.
Nguyen, Hai M.
Simard, Marc
Thorpe, Andrew K.
author_facet Thompson, David R.
Bohn, Niklas
Brodrick, Philip G.
Carmon, Nimrod
Eastwood, Michael L.
Eckert, Regina
Fichot, Cédric G.
Harringmeyer, Joshua P.
Nguyen, Hai M.
Simard, Marc
Thorpe, Andrew K.
author_sort Thompson, David R.
collection PubMed
description Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ecosystem traits. However, estimation of surface reflectance and atmospheric state is computationally challenging, and the terabyte data volumes of global missions will exceed available processing capacity. This article describes how missions can overcome this bottleneck using the spatial continuity of atmospheric fields. Contemporary imaging spectrometers oversample atmospheric spatial variability, so it is not necessary to invert every pixel. Spatially sparse solutions can train local linear emulators that provide fast, exact inversions in their vicinity. We find that estimating the atmosphere at 200 m scales can outperform traditional atmospheric correction, improving speed by one to two orders of magnitude with no measurable penalty to accuracy. We validate performance with an airborne field campaign, showing reflectance accuracies with RMSE of 1.1% or better compared to ground measurements of diverse targets. These errors are statistically consistent with retrieval uncertainty budgets. Local emulators can close the efficiency gap and make rigorous model inversion algorithms feasible for global missions such as SBG.
format Online
Article
Text
id pubmed-9285454
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92854542022-07-18 Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy Thompson, David R. Bohn, Niklas Brodrick, Philip G. Carmon, Nimrod Eastwood, Michael L. Eckert, Regina Fichot, Cédric G. Harringmeyer, Joshua P. Nguyen, Hai M. Simard, Marc Thorpe, Andrew K. J Geophys Res Biogeosci Research Article Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ecosystem traits. However, estimation of surface reflectance and atmospheric state is computationally challenging, and the terabyte data volumes of global missions will exceed available processing capacity. This article describes how missions can overcome this bottleneck using the spatial continuity of atmospheric fields. Contemporary imaging spectrometers oversample atmospheric spatial variability, so it is not necessary to invert every pixel. Spatially sparse solutions can train local linear emulators that provide fast, exact inversions in their vicinity. We find that estimating the atmosphere at 200 m scales can outperform traditional atmospheric correction, improving speed by one to two orders of magnitude with no measurable penalty to accuracy. We validate performance with an airborne field campaign, showing reflectance accuracies with RMSE of 1.1% or better compared to ground measurements of diverse targets. These errors are statistically consistent with retrieval uncertainty budgets. Local emulators can close the efficiency gap and make rigorous model inversion algorithms feasible for global missions such as SBG. John Wiley and Sons Inc. 2022-06-27 2022-06 /pmc/articles/PMC9285454/ /pubmed/35859986 http://dx.doi.org/10.1029/2021JG006711 Text en © 2022 Jet Propulsion Laboratory. California Institute of Technology. Government sponsorship acknowledged. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Article
Thompson, David R.
Bohn, Niklas
Brodrick, Philip G.
Carmon, Nimrod
Eastwood, Michael L.
Eckert, Regina
Fichot, Cédric G.
Harringmeyer, Joshua P.
Nguyen, Hai M.
Simard, Marc
Thorpe, Andrew K.
Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy
title Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy
title_full Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy
title_fullStr Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy
title_full_unstemmed Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy
title_short Atmospheric Lengthscales for Global VSWIR Imaging Spectroscopy
title_sort atmospheric lengthscales for global vswir imaging spectroscopy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285454/
https://www.ncbi.nlm.nih.gov/pubmed/35859986
http://dx.doi.org/10.1029/2021JG006711
work_keys_str_mv AT thompsondavidr atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT bohnniklas atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT brodrickphilipg atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT carmonnimrod atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT eastwoodmichaell atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT eckertregina atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT fichotcedricg atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT harringmeyerjoshuap atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT nguyenhaim atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT simardmarc atmosphericlengthscalesforglobalvswirimagingspectroscopy
AT thorpeandrewk atmosphericlengthscalesforglobalvswirimagingspectroscopy