Cargando…
Context Matters: Recovering Human Semantic Structure from Machine Learning Analysis of Large‐Scale Text Corpora
Applying machine learning algorithms to automatically infer relationships between concepts from large‐scale collections of documents presents a unique opportunity to investigate at scale how human semantic knowledge is organized, how people use it to make fundamental judgments (“How similar are cats...
Autores principales: | Iordan, Marius Cătălin, Giallanza, Tyler, Ellis, Cameron T., Beckage, Nicole M., Cohen, Jonathan D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285590/ https://www.ncbi.nlm.nih.gov/pubmed/35146779 http://dx.doi.org/10.1111/cogs.13085 |
Ejemplares similares
-
Metaphor Identification in Large Texts Corpora
por: Neuman, Yair, et al.
Publicado: (2013) -
Small Worlds and Semantic Network Growth in Typical and Late Talkers
por: Beckage, Nicole, et al.
Publicado: (2011) -
Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice
por: Irving-Rodgers, Helen F., et al.
Publicado: (2009) -
Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies
por: Cohen, Raphael, et al.
Publicado: (2013) -
A Linear-RBF Multikernel SVM to Classify Big Text Corpora
por: Romero, R., et al.
Publicado: (2015)