Cargando…

Five sources of bias in natural language processing

Recently, there has been an increased interest in demographically grounded bias in natural language processing (NLP) applications. Much of the recent work has focused on describing bias and providing an overview of bias in a larger context. Here, we provide a simple, actionable summary of this recen...

Descripción completa

Detalles Bibliográficos
Autores principales: Hovy, Dirk, Prabhumoye, Shrimai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285808/
https://www.ncbi.nlm.nih.gov/pubmed/35864931
http://dx.doi.org/10.1111/lnc3.12432
Descripción
Sumario:Recently, there has been an increased interest in demographically grounded bias in natural language processing (NLP) applications. Much of the recent work has focused on describing bias and providing an overview of bias in a larger context. Here, we provide a simple, actionable summary of this recent work. We outline five sources where bias can occur in NLP systems: (1) the data, (2) the annotation process, (3) the input representations, (4) the models, and finally (5) the research design (or how we conceptualize our research). We explore each of the bias sources in detail in this article, including examples and links to related work, as well as potential counter‐measures.