Cargando…

Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales

Biodiversity‐benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms mig...

Descripción completa

Detalles Bibliográficos
Autores principales: Carrié, Romain, Ekroos, Johan, Smith, Henrik G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285809/
https://www.ncbi.nlm.nih.gov/pubmed/35191107
http://dx.doi.org/10.1002/eap.2576
_version_ 1784747866822017024
author Carrié, Romain
Ekroos, Johan
Smith, Henrik G.
author_facet Carrié, Romain
Ekroos, Johan
Smith, Henrik G.
author_sort Carrié, Romain
collection PubMed
description Biodiversity‐benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms might allow species to cope with intensive crop management. We studied flowering plant communities using a spatially replicated design in different habitats (cereal, ley and seminatural grasslands) in organic and conventional farms, distributed along a gradient in proportion of seminatural grasslands. We developed a novel method to compare the rates of species turnover within and between habitats, and between the total species pools in the two farming systems. We found that the intrahabitat species turnover did not differ between organic and conventional farms, but that organic farms had a significantly higher interhabitat turnover of flowering plant species compared with conventional ones. This was mainly driven by herbicide‐sensitive species in cereal fields in organic farms, as these contained 2.5 times more species exclusive to cereal fields compared with conventional farms. The farm‐scale species richness of flowering plants was higher in organic compared with conventional farms, but only in simple landscapes. At the interfarm level, we found that 36% of species were shared between the two farming systems, 37% were specific to organic farms whereas 27% were specific to conventional ones. Therefore, our results suggest that that both community nestedness and species turnover drive changes in species composition between the two farming systems. These large‐scale shifts in species composition were driven by both species‐specific herbicide and nitrogen sensitivity of plants. Our study demonstrates that organic farming should foster a diversity of flowering plant species from local to landscape scales, by promoting unique sets of arable‐adapted species that are scarce in conventional systems. In terms of biodiversity conservation, our results call for promoting organic farming over large spatial extents, especially in simple landscapes, where such transitions would benefit plant diversity most.
format Online
Article
Text
id pubmed-9285809
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-92858092022-07-19 Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales Carrié, Romain Ekroos, Johan Smith, Henrik G. Ecol Appl Articles Biodiversity‐benefits of organic farming have mostly been documented at the field scale. However, these benefits from organic farming to species diversity may not propagate to larger scales because variation in the management of different crop types and seminatural habitats in conventional farms might allow species to cope with intensive crop management. We studied flowering plant communities using a spatially replicated design in different habitats (cereal, ley and seminatural grasslands) in organic and conventional farms, distributed along a gradient in proportion of seminatural grasslands. We developed a novel method to compare the rates of species turnover within and between habitats, and between the total species pools in the two farming systems. We found that the intrahabitat species turnover did not differ between organic and conventional farms, but that organic farms had a significantly higher interhabitat turnover of flowering plant species compared with conventional ones. This was mainly driven by herbicide‐sensitive species in cereal fields in organic farms, as these contained 2.5 times more species exclusive to cereal fields compared with conventional farms. The farm‐scale species richness of flowering plants was higher in organic compared with conventional farms, but only in simple landscapes. At the interfarm level, we found that 36% of species were shared between the two farming systems, 37% were specific to organic farms whereas 27% were specific to conventional ones. Therefore, our results suggest that that both community nestedness and species turnover drive changes in species composition between the two farming systems. These large‐scale shifts in species composition were driven by both species‐specific herbicide and nitrogen sensitivity of plants. Our study demonstrates that organic farming should foster a diversity of flowering plant species from local to landscape scales, by promoting unique sets of arable‐adapted species that are scarce in conventional systems. In terms of biodiversity conservation, our results call for promoting organic farming over large spatial extents, especially in simple landscapes, where such transitions would benefit plant diversity most. John Wiley & Sons, Inc. 2022-04-10 2022-06 /pmc/articles/PMC9285809/ /pubmed/35191107 http://dx.doi.org/10.1002/eap.2576 Text en © 2022 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Articles
Carrié, Romain
Ekroos, Johan
Smith, Henrik G.
Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
title Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
title_full Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
title_fullStr Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
title_full_unstemmed Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
title_short Turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
title_sort turnover and nestedness drive plant diversity benefits of organic farming from local to landscape scales
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285809/
https://www.ncbi.nlm.nih.gov/pubmed/35191107
http://dx.doi.org/10.1002/eap.2576
work_keys_str_mv AT carrieromain turnoverandnestednessdriveplantdiversitybenefitsoforganicfarmingfromlocaltolandscapescales
AT ekroosjohan turnoverandnestednessdriveplantdiversitybenefitsoforganicfarmingfromlocaltolandscapescales
AT smithhenrikg turnoverandnestednessdriveplantdiversitybenefitsoforganicfarmingfromlocaltolandscapescales