Cargando…

A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids

The simulation of vast numbers of rigid bodies of non‐analytical shapes and of tremendously different sizes that collide with each other is computationally challenging. A bottleneck is the identification of all particle contact points per time step. We propose a tree‐based multilevel meta data struc...

Descripción completa

Detalles Bibliográficos
Autores principales: Krestenitis, Konstantinos, Weinzierl, Tobias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285829/
https://www.ncbi.nlm.nih.gov/pubmed/35864936
http://dx.doi.org/10.1002/cpe.4935
_version_ 1784747871785975808
author Krestenitis, Konstantinos
Weinzierl, Tobias
author_facet Krestenitis, Konstantinos
Weinzierl, Tobias
author_sort Krestenitis, Konstantinos
collection PubMed
description The simulation of vast numbers of rigid bodies of non‐analytical shapes and of tremendously different sizes that collide with each other is computationally challenging. A bottleneck is the identification of all particle contact points per time step. We propose a tree‐based multilevel meta data structure to administer the particles. The data structure plus a purpose‐made tree traversal identifying the contact points introduce concurrency to the particle comparisons, whilst they keep the absolute number of particle‐to‐particle comparisons low. Furthermore, a novel adaptivity criterion allows explicit time stepping to work with comparably large time steps. It optimises both toward low algorithmic complexity per time step and low numbers of time steps. We study three different parallelisation strategies exploiting our traversal's concurrency. The fusion of two of them yields promising speedups once we rely on maximally asynchronous task‐based realisations. Our work shows that new computer architecture can push the boundary of rigid particle computability, yet if and only if the right data structures and data processing schemes are chosen.
format Online
Article
Text
id pubmed-9285829
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92858292022-07-19 A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids Krestenitis, Konstantinos Weinzierl, Tobias Concurr Comput Special Issue Papers The simulation of vast numbers of rigid bodies of non‐analytical shapes and of tremendously different sizes that collide with each other is computationally challenging. A bottleneck is the identification of all particle contact points per time step. We propose a tree‐based multilevel meta data structure to administer the particles. The data structure plus a purpose‐made tree traversal identifying the contact points introduce concurrency to the particle comparisons, whilst they keep the absolute number of particle‐to‐particle comparisons low. Furthermore, a novel adaptivity criterion allows explicit time stepping to work with comparably large time steps. It optimises both toward low algorithmic complexity per time step and low numbers of time steps. We study three different parallelisation strategies exploiting our traversal's concurrency. The fusion of two of them yields promising speedups once we rely on maximally asynchronous task‐based realisations. Our work shows that new computer architecture can push the boundary of rigid particle computability, yet if and only if the right data structures and data processing schemes are chosen. John Wiley and Sons Inc. 2018-08-31 2019-10-10 /pmc/articles/PMC9285829/ /pubmed/35864936 http://dx.doi.org/10.1002/cpe.4935 Text en © 2018 The Authors. Concurrency and Computation: Practice and Experience Published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Special Issue Papers
Krestenitis, Konstantinos
Weinzierl, Tobias
A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
title A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
title_full A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
title_fullStr A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
title_full_unstemmed A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
title_short A multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
title_sort multi‐core ready discrete element method with triangles using dynamically adaptive multiscale grids
topic Special Issue Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285829/
https://www.ncbi.nlm.nih.gov/pubmed/35864936
http://dx.doi.org/10.1002/cpe.4935
work_keys_str_mv AT krestenitiskonstantinos amulticorereadydiscreteelementmethodwithtrianglesusingdynamicallyadaptivemultiscalegrids
AT weinzierltobias amulticorereadydiscreteelementmethodwithtrianglesusingdynamicallyadaptivemultiscalegrids
AT krestenitiskonstantinos multicorereadydiscreteelementmethodwithtrianglesusingdynamicallyadaptivemultiscalegrids
AT weinzierltobias multicorereadydiscreteelementmethodwithtrianglesusingdynamicallyadaptivemultiscalegrids