Cargando…
Hierarchical Exploration of Continuous Seismograms With Unsupervised Learning
Continuous seismograms contain a wealth of information with a large variety of signals with different origin. Identifying these signals is a crucial step in understanding physical geological objects. We propose a strategy to identify classes of signals in continuous single‐station seismograms in an...
Autores principales: | Steinmann, René, Seydoux, Léonard, Beaucé, Éric, Campillo, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285886/ https://www.ncbi.nlm.nih.gov/pubmed/35864916 http://dx.doi.org/10.1029/2021JB022455 |
Ejemplares similares
-
AI‐Based Unmixing of Medium and Source Signatures From Seismograms: Ground Freezing Patterns
por: Steinmann, René, et al.
Publicado: (2022) -
Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
por: Seydoux, Léonard, et al.
Publicado: (2020) -
On the rotation of teleseismic seismograms based on the receiver function technique
por: Wilde-Piórko, M., et al.
Publicado: (2017) -
Amplification of strong-ground motion in the city of Zagreb, Croatia, estimated by computetion of synthetic seismograms
por: Lokmer, I, et al.
Publicado: (2001) -
Computer Vision Algorithms of DigitSeis for Building a Vectorised Dataset of Historical Seismograms from the Archive of Royal Observatory of Belgium
por: Lemenkova, Polina, et al.
Publicado: (2022)