Cargando…

Preparation and Co‐Culture of iPSC‐Derived Dopaminergic Neurons and Astrocytes

Induced pluripotent stem cell (iPSC)‐based models are powerful tools to study neurodegenerative diseases such as Parkinson's disease. The differentiation of patient‐derived neurons and astrocytes allows investigation of the molecular mechanisms responsible for disease onset and development. In...

Descripción completa

Detalles Bibliográficos
Autor principal: de Rus Jacquet, Aurelie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285934/
https://www.ncbi.nlm.nih.gov/pubmed/31763766
http://dx.doi.org/10.1002/cpcb.98
Descripción
Sumario:Induced pluripotent stem cell (iPSC)‐based models are powerful tools to study neurodegenerative diseases such as Parkinson's disease. The differentiation of patient‐derived neurons and astrocytes allows investigation of the molecular mechanisms responsible for disease onset and development. In particular, these two cell types can be mono‐ or co‐cultured to study the influence of cell‐autonomous and non‐cell‐autonomous contributors to neurodegenerative diseases. We developed a streamlined procedure to produce high‐quality/high‐purity cultures of dopaminergic neurons and astrocytes that originate from the same population of midbrain floor‐plate progenitors. This unit describes differentiation, quality control, culture parameters, and troubleshooting tips to ensure the highest quality and reproducibility of research results. © 2019 The Authors. Basic Protocol 1: Differentiation of iPSCs into midbrain‐patterned neural progenitor cells Support Protocol: Quality control of neural progenitor cells Basic Protocol 2: Differentiation of neural progenitor cells into astrocytes Basic Protocol 3: Differentiation of neural progenitor cells into dopaminergic neurons Basic Protocol 4: Co‐culture of iPSC‐derived neurons and astrocytes