Cargando…
In silico toxicology: From structure–activity relationships towards deep learning and adverse outcome pathways
In silico toxicology is an emerging field. It gains increasing importance as research is aiming to decrease the use of animal experiments as suggested in the 3R principles by Russell and Burch. In silico toxicology is a means to identify hazards of compounds before synthesis, and thus in very early...
Autores principales: | Hemmerich, Jennifer, Ecker, Gerhard F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Periodicals, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286356/ https://www.ncbi.nlm.nih.gov/pubmed/35866138 http://dx.doi.org/10.1002/wcms.1475 |
Ejemplares similares
-
In silico toxicology: computational methods for the prediction of chemical toxicity
por: Raies, Arwa B., et al.
Publicado: (2016) -
In silico toxicology: comprehensive benchmarking of multi‐label classification methods applied to chemical toxicity data
por: Raies, Arwa B., et al.
Publicado: (2017) -
Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
por: Hemmerich, Jennifer, et al.
Publicado: (2020) -
Predicting COVID-19 disease progression and patient outcomes based on temporal deep learning
por: Sun, Chenxi, et al.
Publicado: (2021) -
Deep learning–based molecular morphometrics for kidney biopsies
por: Zimmermann, Marina, et al.
Publicado: (2021)