Cargando…

A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery

INTRODUCTION: The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow...

Descripción completa

Detalles Bibliográficos
Autores principales: Padovan, Erica, Marullo, Giorgia, Tanzi, Leonardo, Piazzolla, Pietro, Moos, Sandro, Porpiglia, Francesco, Vezzetti, Enrico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286374/
https://www.ncbi.nlm.nih.gov/pubmed/35246913
http://dx.doi.org/10.1002/rcs.2387
_version_ 1784747996433350656
author Padovan, Erica
Marullo, Giorgia
Tanzi, Leonardo
Piazzolla, Pietro
Moos, Sandro
Porpiglia, Francesco
Vezzetti, Enrico
author_facet Padovan, Erica
Marullo, Giorgia
Tanzi, Leonardo
Piazzolla, Pietro
Moos, Sandro
Porpiglia, Francesco
Vezzetti, Enrico
author_sort Padovan, Erica
collection PubMed
description INTRODUCTION: The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures. METHODS: This framework exploits semantic segmentation and, thereafter, two techniques, based on Convolutional Neural Networks and motion analysis, were used to infer the rotation. RESULTS: The segmentation shows optimal accuracies, with a mean IoU score greater than 80% in all tests. Different performance levels are obtained for rotation, depending on the surgical procedure. DISCUSSION: Even if the presented methodology has various degrees of precision depending on the testing scenario, this work sets the first step for the adoption of deep learning and augmented reality to generalise the automatic registration process.
format Online
Article
Text
id pubmed-9286374
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92863742022-07-19 A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery Padovan, Erica Marullo, Giorgia Tanzi, Leonardo Piazzolla, Pietro Moos, Sandro Porpiglia, Francesco Vezzetti, Enrico Int J Med Robot Original Articles INTRODUCTION: The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures. METHODS: This framework exploits semantic segmentation and, thereafter, two techniques, based on Convolutional Neural Networks and motion analysis, were used to infer the rotation. RESULTS: The segmentation shows optimal accuracies, with a mean IoU score greater than 80% in all tests. Different performance levels are obtained for rotation, depending on the surgical procedure. DISCUSSION: Even if the presented methodology has various degrees of precision depending on the testing scenario, this work sets the first step for the adoption of deep learning and augmented reality to generalise the automatic registration process. John Wiley and Sons Inc. 2022-03-13 2022-06 /pmc/articles/PMC9286374/ /pubmed/35246913 http://dx.doi.org/10.1002/rcs.2387 Text en © 2022 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Padovan, Erica
Marullo, Giorgia
Tanzi, Leonardo
Piazzolla, Pietro
Moos, Sandro
Porpiglia, Francesco
Vezzetti, Enrico
A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
title A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
title_full A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
title_fullStr A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
title_full_unstemmed A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
title_short A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery
title_sort deep learning framework for real‐time 3d model registration in robot‐assisted laparoscopic surgery
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286374/
https://www.ncbi.nlm.nih.gov/pubmed/35246913
http://dx.doi.org/10.1002/rcs.2387
work_keys_str_mv AT padovanerica adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT marullogiorgia adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT tanzileonardo adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT piazzollapietro adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT moossandro adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT porpigliafrancesco adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT vezzettienrico adeeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT padovanerica deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT marullogiorgia deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT tanzileonardo deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT piazzollapietro deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT moossandro deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT porpigliafrancesco deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery
AT vezzettienrico deeplearningframeworkforrealtime3dmodelregistrationinrobotassistedlaparoscopicsurgery