Cargando…

Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery

Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensin...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Tien L. T., Lee, Hyongki, Bui, Duong D., Graham, L. Phil, Darby, Stephen D., Pechlivanidis, Ilias G., Leyland, Julian, Biswas, Nishan K., Choi, Gyewoon, Batelaan, Okke, Bui, Thao T. P., Do, Son K., Tran, Tinh V., Nguyen, Hoa Thi, Hwang, Euiho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286455/
https://www.ncbi.nlm.nih.gov/pubmed/35866043
http://dx.doi.org/10.1029/2021WR031191
_version_ 1784748015642214400
author Du, Tien L. T.
Lee, Hyongki
Bui, Duong D.
Graham, L. Phil
Darby, Stephen D.
Pechlivanidis, Ilias G.
Leyland, Julian
Biswas, Nishan K.
Choi, Gyewoon
Batelaan, Okke
Bui, Thao T. P.
Do, Son K.
Tran, Tinh V.
Nguyen, Hoa Thi
Hwang, Euiho
author_facet Du, Tien L. T.
Lee, Hyongki
Bui, Duong D.
Graham, L. Phil
Darby, Stephen D.
Pechlivanidis, Ilias G.
Leyland, Julian
Biswas, Nishan K.
Choi, Gyewoon
Batelaan, Okke
Bui, Thao T. P.
Do, Son K.
Tran, Tinh V.
Nguyen, Hoa Thi
Hwang, Euiho
author_sort Du, Tien L. T.
collection PubMed
description Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within‐year and over‐year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run‐of‐river reservoirs (CC < 0.4, 40% ≤ NRMSE ≤ 270%). Given a large gap in the number of reservoirs between global and local databases, the proposed framework can improve representation of existing reservoirs in the global reservoir database and thus human impacts in hydrological models. Adopting an Integrated Reservoir Operation Scheme within a multi‐basin model was found to overcome the limitations of remote sensing and improve streamflow prediction at ungauged cascade reservoir systems where previous modeling approaches were unsuccessful. As a result, daily regulated streamflow was predicted competently across all types of reservoirs (median values of CC = 0.65, NRMSE = 8%, and Kling‐Gupta efficiency [KGE] = 0.55) and downstream hydrological stations (median values of CC = 0.94, NRMSE = 8%, and KGE = 0.81). The findings are valuable for helping to understand the impacts of reservoirs and dams on streamflow and for developing more useful adaptation measures to extreme events in data sparse river basins.
format Online
Article
Text
id pubmed-9286455
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92864552022-07-19 Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery Du, Tien L. T. Lee, Hyongki Bui, Duong D. Graham, L. Phil Darby, Stephen D. Pechlivanidis, Ilias G. Leyland, Julian Biswas, Nishan K. Choi, Gyewoon Batelaan, Okke Bui, Thao T. P. Do, Son K. Tran, Tinh V. Nguyen, Hoa Thi Hwang, Euiho Water Resour Res Research Article Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within‐year and over‐year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run‐of‐river reservoirs (CC < 0.4, 40% ≤ NRMSE ≤ 270%). Given a large gap in the number of reservoirs between global and local databases, the proposed framework can improve representation of existing reservoirs in the global reservoir database and thus human impacts in hydrological models. Adopting an Integrated Reservoir Operation Scheme within a multi‐basin model was found to overcome the limitations of remote sensing and improve streamflow prediction at ungauged cascade reservoir systems where previous modeling approaches were unsuccessful. As a result, daily regulated streamflow was predicted competently across all types of reservoirs (median values of CC = 0.65, NRMSE = 8%, and Kling‐Gupta efficiency [KGE] = 0.55) and downstream hydrological stations (median values of CC = 0.94, NRMSE = 8%, and KGE = 0.81). The findings are valuable for helping to understand the impacts of reservoirs and dams on streamflow and for developing more useful adaptation measures to extreme events in data sparse river basins. John Wiley and Sons Inc. 2022-03-24 2022-03 /pmc/articles/PMC9286455/ /pubmed/35866043 http://dx.doi.org/10.1029/2021WR031191 Text en © 2022. The Authors. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Du, Tien L. T.
Lee, Hyongki
Bui, Duong D.
Graham, L. Phil
Darby, Stephen D.
Pechlivanidis, Ilias G.
Leyland, Julian
Biswas, Nishan K.
Choi, Gyewoon
Batelaan, Okke
Bui, Thao T. P.
Do, Son K.
Tran, Tinh V.
Nguyen, Hoa Thi
Hwang, Euiho
Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery
title Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery
title_full Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery
title_fullStr Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery
title_full_unstemmed Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery
title_short Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multi‐Basin Modeling and Remote Sensing Imagery
title_sort streamflow prediction in highly regulated, transboundary watersheds using multi‐basin modeling and remote sensing imagery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286455/
https://www.ncbi.nlm.nih.gov/pubmed/35866043
http://dx.doi.org/10.1029/2021WR031191
work_keys_str_mv AT dutienlt streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT leehyongki streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT buiduongd streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT grahamlphil streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT darbystephend streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT pechlivanidisiliasg streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT leylandjulian streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT biswasnishank streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT choigyewoon streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT batelaanokke streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT buithaotp streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT dosonk streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT trantinhv streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT nguyenhoathi streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery
AT hwangeuiho streamflowpredictioninhighlyregulatedtransboundarywatershedsusingmultibasinmodelingandremotesensingimagery