Cargando…
Transfer Learning Aurora Image Classification and Magnetic Disturbance Evaluation
We develop an open source algorithm to apply Transfer learning to Aurora image classification and Magnetic disturbance Evaluation (TAME). For this purpose, we evaluate the performance of 80 pretrained neural networks using the Oslo Auroral THEMIS (OATH) data set of all‐sky images, both in terms of r...
Autores principales: | Sado, P., Clausen, L. B. N., Miloch, W. J., Nickisch, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286616/ https://www.ncbi.nlm.nih.gov/pubmed/35865031 http://dx.doi.org/10.1029/2021JA029683 |
Ejemplares similares
-
Aurora Image Classification with Deep Metric Learning
por: Endo, Takeru, et al.
Publicado: (2022) -
Equatorial aurora: the aurora-like airglow in the negative magnetic anomaly
por: He, Fei, et al.
Publicado: (2020) -
Autoencoder and restricted Boltzmann machine for transfer learning in functional magnetic resonance imaging task classification
por: Hwang, Jundong, et al.
Publicado: (2023) -
Imaging global auroras in space
por: Lui, A. T. Y.
Publicado: (2019) -
Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification
por: Baltruschat, Ivo M., et al.
Publicado: (2019)