Cargando…
Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism
Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g., (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size, and shape; some of them record the Earth's magnetic fiel...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286618/ https://www.ncbi.nlm.nih.gov/pubmed/35866100 http://dx.doi.org/10.1029/2021JB022364 |
_version_ | 1784748055109566464 |
---|---|
author | de Groot, Lennart V. Fabian, Karl Béguin, Annemarieke Kosters, Martha E. Cortés‐Ortuño, David Fu, Roger R. Jansen, Chloë M. L. Harrison, Richard J. van Leeuwen, Tristan Barnhoorn, Auke |
author_facet | de Groot, Lennart V. Fabian, Karl Béguin, Annemarieke Kosters, Martha E. Cortés‐Ortuño, David Fu, Roger R. Jansen, Chloë M. L. Harrison, Richard J. van Leeuwen, Tristan Barnhoorn, Auke |
author_sort | de Groot, Lennart V. |
collection | PubMed |
description | Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g., (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size, and shape; some of them record the Earth's magnetic field well, others are unreliable. The presence of a small amount of adverse behaved magnetic grains in a sample may already obscure important information on the past state of the geomagnetic field. Recently it was shown that it is possible to determine magnetizations of individual grains in a sample by combining X‐ray computed tomography and magnetic surface scanning measurements. Here we establish this new Micromagnetic Tomography (MMT) technique and make it suitable for use with different magnetic scanning techniques, and for both synthetic and natural samples. We acquired reliable magnetic directions by selecting subsets of grains in a synthetic sample, and we obtained rock‐magnetic information of individual grains in a volcanic sample. This illustrates that MMT opens up entirely new venues of paleomagnetic and rock‐magnetic research. MMT's unique ability to determine the magnetization of individual grains in a nondestructive way allows for a systematic analysis of how geological materials record and retain information on the past state of the Earth's magnetic field. Moreover, by interpreting only the contributions of known magnetically well‐behaved grains in a sample, MMT has the potential to unlock paleomagnetic information from even the most complex, crucial, or valuable recorders that current methods are unable to recover. |
format | Online Article Text |
id | pubmed-9286618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92866182022-07-19 Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism de Groot, Lennart V. Fabian, Karl Béguin, Annemarieke Kosters, Martha E. Cortés‐Ortuño, David Fu, Roger R. Jansen, Chloë M. L. Harrison, Richard J. van Leeuwen, Tristan Barnhoorn, Auke J Geophys Res Solid Earth Research Article Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g., (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size, and shape; some of them record the Earth's magnetic field well, others are unreliable. The presence of a small amount of adverse behaved magnetic grains in a sample may already obscure important information on the past state of the geomagnetic field. Recently it was shown that it is possible to determine magnetizations of individual grains in a sample by combining X‐ray computed tomography and magnetic surface scanning measurements. Here we establish this new Micromagnetic Tomography (MMT) technique and make it suitable for use with different magnetic scanning techniques, and for both synthetic and natural samples. We acquired reliable magnetic directions by selecting subsets of grains in a synthetic sample, and we obtained rock‐magnetic information of individual grains in a volcanic sample. This illustrates that MMT opens up entirely new venues of paleomagnetic and rock‐magnetic research. MMT's unique ability to determine the magnetization of individual grains in a nondestructive way allows for a systematic analysis of how geological materials record and retain information on the past state of the Earth's magnetic field. Moreover, by interpreting only the contributions of known magnetically well‐behaved grains in a sample, MMT has the potential to unlock paleomagnetic information from even the most complex, crucial, or valuable recorders that current methods are unable to recover. John Wiley and Sons Inc. 2021-10-13 2021-10 /pmc/articles/PMC9286618/ /pubmed/35866100 http://dx.doi.org/10.1029/2021JB022364 Text en © 2021 The Authors. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Article de Groot, Lennart V. Fabian, Karl Béguin, Annemarieke Kosters, Martha E. Cortés‐Ortuño, David Fu, Roger R. Jansen, Chloë M. L. Harrison, Richard J. van Leeuwen, Tristan Barnhoorn, Auke Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism |
title | Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism |
title_full | Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism |
title_fullStr | Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism |
title_full_unstemmed | Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism |
title_short | Micromagnetic Tomography for Paleomagnetism and Rock‐Magnetism |
title_sort | micromagnetic tomography for paleomagnetism and rock‐magnetism |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286618/ https://www.ncbi.nlm.nih.gov/pubmed/35866100 http://dx.doi.org/10.1029/2021JB022364 |
work_keys_str_mv | AT degrootlennartv micromagnetictomographyforpaleomagnetismandrockmagnetism AT fabiankarl micromagnetictomographyforpaleomagnetismandrockmagnetism AT beguinannemarieke micromagnetictomographyforpaleomagnetismandrockmagnetism AT kostersmarthae micromagnetictomographyforpaleomagnetismandrockmagnetism AT cortesortunodavid micromagnetictomographyforpaleomagnetismandrockmagnetism AT furogerr micromagnetictomographyforpaleomagnetismandrockmagnetism AT jansenchloeml micromagnetictomographyforpaleomagnetismandrockmagnetism AT harrisonrichardj micromagnetictomographyforpaleomagnetismandrockmagnetism AT vanleeuwentristan micromagnetictomographyforpaleomagnetismandrockmagnetism AT barnhoornauke micromagnetictomographyforpaleomagnetismandrockmagnetism |