Cargando…
Predicting disease activity in patients with multiple sclerosis: An explainable machine‐learning approach in the Mavenclad trials
Multiple sclerosis (MS) is among the most common autoimmune disabling neurological conditions of young adults and affects more than 2.3 million people worldwide. Predicting future disease activity in patients with MS based on their pathophysiology and current treatment is pivotal to orientate future...
Autores principales: | Basu, Sreetama, Munafo, Alain, Ben‐Amor, Ali‐Frederic, Roy, Sanjeev, Girard, Pascal, Terranova, Nadia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286719/ https://www.ncbi.nlm.nih.gov/pubmed/35521742 http://dx.doi.org/10.1002/psp4.12796 |
Ejemplares similares
-
Machine Learning Analysis of Individual Tumor Lesions in Four Metastatic Colorectal Cancer Clinical Studies: Linking Tumor Heterogeneity to Overall Survival
por: Vera-Yunca, Diego, et al.
Publicado: (2020) -
The Clinical Pharmacology of Cladribine Tablets for the Treatment of Relapsing Multiple Sclerosis
por: Hermann, Robert, et al.
Publicado: (2018) -
Effects of Postponing Treatment in the Second Year of Cladribine Administration: Clinical Trial Simulation Analysis of Absolute Lymphocyte Counts and Relapse Rate in Patients with Relapsing-Remitting Multiple Sclerosis
por: Terranova, Nadia, et al.
Publicado: (2018) -
Assessing Similarity Among Individual Tumor Size Lesion Dynamics: The CICIL Methodology
por: Terranova, Nadia, et al.
Publicado: (2018) -
Population pharmacokinetic model selection assisted by machine learning
por: Sibieude, Emeric, et al.
Publicado: (2021)