Cargando…
Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
Nonlinear mixed effect (NLME) models are the gold standard for the analysis of patient response following drug exposure. However, these types of models are complex and time‐consuming to develop. There is great interest in the adoption of machine‐learning methods, but most implementations cannot be r...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286722/ http://dx.doi.org/10.1002/psp4.12808 |
_version_ | 1784748081028268032 |
---|---|
author | Janssen, Alexander Leebeek, Frank W. G. Cnossen, Marjon H. Mathôt, Ron A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. |
author_facet | Janssen, Alexander Leebeek, Frank W. G. Cnossen, Marjon H. Mathôt, Ron A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. |
author_sort | Janssen, Alexander |
collection | PubMed |
description | Nonlinear mixed effect (NLME) models are the gold standard for the analysis of patient response following drug exposure. However, these types of models are complex and time‐consuming to develop. There is great interest in the adoption of machine‐learning methods, but most implementations cannot be reliably extrapolated to treatment strategies outside of the training data. In order to solve this problem, we propose the deep compartment model (DCM), a combination of neural networks and ordinary differential equations. Using simulated datasets of different sizes, we show that our model remains accurate when training on small data sets. Furthermore, using a real‐world data set of patients with hemophilia A receiving factor VIII concentrate while undergoing surgery, we show that our model more accurately predicts a priori drug concentrations compared to a previous NLME model. In addition, we show that our model correctly describes the changing drug concentration over time. By adopting pharmacokinetic principles, the DCM allows for simulation of different treatment strategies and enables therapeutic drug monitoring. |
format | Online Article Text |
id | pubmed-9286722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92867222022-07-19 Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling Janssen, Alexander Leebeek, Frank W. G. Cnossen, Marjon H. Mathôt, Ron A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. CPT Pharmacometrics Syst Pharmacol Research Nonlinear mixed effect (NLME) models are the gold standard for the analysis of patient response following drug exposure. However, these types of models are complex and time‐consuming to develop. There is great interest in the adoption of machine‐learning methods, but most implementations cannot be reliably extrapolated to treatment strategies outside of the training data. In order to solve this problem, we propose the deep compartment model (DCM), a combination of neural networks and ordinary differential equations. Using simulated datasets of different sizes, we show that our model remains accurate when training on small data sets. Furthermore, using a real‐world data set of patients with hemophilia A receiving factor VIII concentrate while undergoing surgery, we show that our model more accurately predicts a priori drug concentrations compared to a previous NLME model. In addition, we show that our model correctly describes the changing drug concentration over time. By adopting pharmacokinetic principles, the DCM allows for simulation of different treatment strategies and enables therapeutic drug monitoring. John Wiley and Sons Inc. 2022-05-27 2022-07 /pmc/articles/PMC9286722/ http://dx.doi.org/10.1002/psp4.12808 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Janssen, Alexander Leebeek, Frank W. G. Cnossen, Marjon H. Mathôt, Ron A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
title | Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
title_full | Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
title_fullStr | Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
title_full_unstemmed | Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
title_short | Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
title_sort | deep compartment models: a deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286722/ http://dx.doi.org/10.1002/psp4.12808 |
work_keys_str_mv | AT janssenalexander deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT leebeekfrankwg deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT cnossenmarjonh deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT mathotronaa deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT fijnvandraatk deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT coppensm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT meijerk deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT scholssem deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT eikenboomhcj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT schutgensreg deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT beckerseam deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT ypmap deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT kruipmjha deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT polinders deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT tammingaryj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT bronsp deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT fischerk deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT vangalenkpm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT nieuwenhuizenl deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT driessensmhe deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT vanvlieti deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT lockj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT hazendonkhcam deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT vanmoorti deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT heijdrajm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT goedhartmhj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT alarashiw deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT preijerst deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT dejagerncb deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT bukkemslh deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT cloesmeijerme deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT collinspw deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT liesnerr deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT chowdaryp deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT millarcm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT hartd deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling AT keelingd deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling |