Cargando…

Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling

Nonlinear mixed effect (NLME) models are the gold standard for the analysis of patient response following drug exposure. However, these types of models are complex and time‐consuming to develop. There is great interest in the adoption of machine‐learning methods, but most implementations cannot be r...

Descripción completa

Detalles Bibliográficos
Autores principales: Janssen, Alexander, Leebeek, Frank W. G., Cnossen, Marjon H., Mathôt, Ron A. A., Fijnvandraat, K., Coppens, M., Meijer, K., Schols, S. E. M., Eikenboom, H. C. J., Schutgens, R. E. G., Beckers, E. A. M., Ypma, P., Kruip, M. J. H. A., Polinder, S., Tamminga, R. Y. J., Brons, P., Fischer, K., van Galen, K. P. M., Nieuwenhuizen, L., Driessens, M. H. E., van Vliet, I., Lock, J., Hazendonk, H. C. A. M., van Moort, I., Heijdra, J. M., Goedhart, M. H. J., Al Arashi, W., Preijers, T., de Jager, N. C. B., Bukkems, L. H., Cloesmeijer, M. E., Collins, P. W., Liesner, R., Chowdary, P., Millar, C. M., Hart, D., Keeling, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286722/
http://dx.doi.org/10.1002/psp4.12808
_version_ 1784748081028268032
author Janssen, Alexander
Leebeek, Frank W. G.
Cnossen, Marjon H.
Mathôt, Ron A. A.
Fijnvandraat, K.
Coppens, M.
Meijer, K.
Schols, S. E. M.
Eikenboom, H. C. J.
Schutgens, R. E. G.
Beckers, E. A. M.
Ypma, P.
Kruip, M. J. H. A.
Polinder, S.
Tamminga, R. Y. J.
Brons, P.
Fischer, K.
van Galen, K. P. M.
Nieuwenhuizen, L.
Driessens, M. H. E.
van Vliet, I.
Lock, J.
Hazendonk, H. C. A. M.
van Moort, I.
Heijdra, J. M.
Goedhart, M. H. J.
Al Arashi, W.
Preijers, T.
de Jager, N. C. B.
Bukkems, L. H.
Cloesmeijer, M. E.
Collins, P. W.
Liesner, R.
Chowdary, P.
Millar, C. M.
Hart, D.
Keeling, D.
author_facet Janssen, Alexander
Leebeek, Frank W. G.
Cnossen, Marjon H.
Mathôt, Ron A. A.
Fijnvandraat, K.
Coppens, M.
Meijer, K.
Schols, S. E. M.
Eikenboom, H. C. J.
Schutgens, R. E. G.
Beckers, E. A. M.
Ypma, P.
Kruip, M. J. H. A.
Polinder, S.
Tamminga, R. Y. J.
Brons, P.
Fischer, K.
van Galen, K. P. M.
Nieuwenhuizen, L.
Driessens, M. H. E.
van Vliet, I.
Lock, J.
Hazendonk, H. C. A. M.
van Moort, I.
Heijdra, J. M.
Goedhart, M. H. J.
Al Arashi, W.
Preijers, T.
de Jager, N. C. B.
Bukkems, L. H.
Cloesmeijer, M. E.
Collins, P. W.
Liesner, R.
Chowdary, P.
Millar, C. M.
Hart, D.
Keeling, D.
author_sort Janssen, Alexander
collection PubMed
description Nonlinear mixed effect (NLME) models are the gold standard for the analysis of patient response following drug exposure. However, these types of models are complex and time‐consuming to develop. There is great interest in the adoption of machine‐learning methods, but most implementations cannot be reliably extrapolated to treatment strategies outside of the training data. In order to solve this problem, we propose the deep compartment model (DCM), a combination of neural networks and ordinary differential equations. Using simulated datasets of different sizes, we show that our model remains accurate when training on small data sets. Furthermore, using a real‐world data set of patients with hemophilia A receiving factor VIII concentrate while undergoing surgery, we show that our model more accurately predicts a priori drug concentrations compared to a previous NLME model. In addition, we show that our model correctly describes the changing drug concentration over time. By adopting pharmacokinetic principles, the DCM allows for simulation of different treatment strategies and enables therapeutic drug monitoring.
format Online
Article
Text
id pubmed-9286722
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92867222022-07-19 Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling Janssen, Alexander Leebeek, Frank W. G. Cnossen, Marjon H. Mathôt, Ron A. A. Fijnvandraat, K. Coppens, M. Meijer, K. Schols, S. E. M. Eikenboom, H. C. J. Schutgens, R. E. G. Beckers, E. A. M. Ypma, P. Kruip, M. J. H. A. Polinder, S. Tamminga, R. Y. J. Brons, P. Fischer, K. van Galen, K. P. M. Nieuwenhuizen, L. Driessens, M. H. E. van Vliet, I. Lock, J. Hazendonk, H. C. A. M. van Moort, I. Heijdra, J. M. Goedhart, M. H. J. Al Arashi, W. Preijers, T. de Jager, N. C. B. Bukkems, L. H. Cloesmeijer, M. E. Collins, P. W. Liesner, R. Chowdary, P. Millar, C. M. Hart, D. Keeling, D. CPT Pharmacometrics Syst Pharmacol Research Nonlinear mixed effect (NLME) models are the gold standard for the analysis of patient response following drug exposure. However, these types of models are complex and time‐consuming to develop. There is great interest in the adoption of machine‐learning methods, but most implementations cannot be reliably extrapolated to treatment strategies outside of the training data. In order to solve this problem, we propose the deep compartment model (DCM), a combination of neural networks and ordinary differential equations. Using simulated datasets of different sizes, we show that our model remains accurate when training on small data sets. Furthermore, using a real‐world data set of patients with hemophilia A receiving factor VIII concentrate while undergoing surgery, we show that our model more accurately predicts a priori drug concentrations compared to a previous NLME model. In addition, we show that our model correctly describes the changing drug concentration over time. By adopting pharmacokinetic principles, the DCM allows for simulation of different treatment strategies and enables therapeutic drug monitoring. John Wiley and Sons Inc. 2022-05-27 2022-07 /pmc/articles/PMC9286722/ http://dx.doi.org/10.1002/psp4.12808 Text en © 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Janssen, Alexander
Leebeek, Frank W. G.
Cnossen, Marjon H.
Mathôt, Ron A. A.
Fijnvandraat, K.
Coppens, M.
Meijer, K.
Schols, S. E. M.
Eikenboom, H. C. J.
Schutgens, R. E. G.
Beckers, E. A. M.
Ypma, P.
Kruip, M. J. H. A.
Polinder, S.
Tamminga, R. Y. J.
Brons, P.
Fischer, K.
van Galen, K. P. M.
Nieuwenhuizen, L.
Driessens, M. H. E.
van Vliet, I.
Lock, J.
Hazendonk, H. C. A. M.
van Moort, I.
Heijdra, J. M.
Goedhart, M. H. J.
Al Arashi, W.
Preijers, T.
de Jager, N. C. B.
Bukkems, L. H.
Cloesmeijer, M. E.
Collins, P. W.
Liesner, R.
Chowdary, P.
Millar, C. M.
Hart, D.
Keeling, D.
Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
title Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
title_full Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
title_fullStr Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
title_full_unstemmed Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
title_short Deep compartment models: A deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
title_sort deep compartment models: a deep learning approach for the reliable prediction of time‐series data in pharmacokinetic modeling
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286722/
http://dx.doi.org/10.1002/psp4.12808
work_keys_str_mv AT janssenalexander deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT leebeekfrankwg deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT cnossenmarjonh deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT mathotronaa deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT fijnvandraatk deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT coppensm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT meijerk deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT scholssem deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT eikenboomhcj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT schutgensreg deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT beckerseam deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT ypmap deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT kruipmjha deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT polinders deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT tammingaryj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT bronsp deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT fischerk deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT vangalenkpm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT nieuwenhuizenl deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT driessensmhe deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT vanvlieti deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT lockj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT hazendonkhcam deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT vanmoorti deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT heijdrajm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT goedhartmhj deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT alarashiw deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT preijerst deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT dejagerncb deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT bukkemslh deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT cloesmeijerme deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT collinspw deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT liesnerr deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT chowdaryp deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT millarcm deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT hartd deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling
AT keelingd deepcompartmentmodelsadeeplearningapproachforthereliablepredictionoftimeseriesdatainpharmacokineticmodeling