Cargando…
Towards identifying cancer patients at risk to miss out on psycho‐oncological treatment via machine learning
OBJECTIVE: In routine oncological treatment settings, psychological distress, including mental disorders, is overlooked in 30% to 50% of patients. High workload and a constant need to optimise time and costs require a quick and easy method to identify patients likely to miss out on psychological sup...
Autores principales: | Günther, Moritz Philipp, Kirchebner, Johannes, Schulze, Jan Ben, von Känel, Roland, Euler, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286797/ https://www.ncbi.nlm.nih.gov/pubmed/35137480 http://dx.doi.org/10.1111/ecc.13555 |
Ejemplares similares
-
Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer
por: Hecht, Karoline, et al.
Publicado: (2023) -
Reading Wishes from the Lips: Cancer Patients’ Need for Psycho-Oncological Support during Inpatient and Outpatient Treatment
por: Schulze, Jan Ben, et al.
Publicado: (2022) -
Proof of concept: Predicting distress in cancer patients using back propagation neural network (BPNN)
por: Jan Ben, Schulze, et al.
Publicado: (2023) -
A short screening tool identifying systemic barriers to distress screening in cancer care
por: Simnacher, Felice, et al.
Publicado: (2023) -
Childhood Maltreatment, Psychopathology, and Offending Behavior in Patients With Schizophrenia: A Latent Class Analysis Evidencing Disparities in Inpatient Treatment Outcome
por: Lau, Steffen, et al.
Publicado: (2021)