Cargando…
Comparison of Three Methodologies for Removal of Random‐Noise‐Induced Biases From Second‐Order Statistical Parameters of Lidar and Radar Measurements
Random‐noise‐induced biases are inherent issues to the accurate derivation of second‐order statistical parameters (e.g., variances, fluxes, energy densities, and power spectra) from lidar and radar measurements. We demonstrate here for the first time an altitude‐interleaved method for eliminating su...
Autores principales: | Jandreau, Jackson, Chu, Xinzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286857/ https://www.ncbi.nlm.nih.gov/pubmed/35865261 http://dx.doi.org/10.1029/2021EA002073 |
Ejemplares similares
-
Laser radar ranging and atmospheric lidar techniques /
Publicado: (1997) -
A Second-Order Method for Removing Mixed Noise from Remote Sensing Images
por: Zhou, Ying, et al.
Publicado: (2023) -
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
por: Yin, Huan, et al.
Publicado: (2021) -
An Overdispersed Black-Box Variational Bayesian–Kalman Filter with Inaccurate Noise Second-Order Statistics
por: Cao, Lin, et al.
Publicado: (2021) -
Signal parameter estimation using fourth order statistics: multiplicative and additive noise environment
por: Gaikwad, Chandrakant J, et al.
Publicado: (2015)