Cargando…

Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis

OBJECTIVE: Currently, the role of circ_0094343 (circPTEN) on the chemosensitivity of CRC remains to be clarified. This study aimed to investigate the role and mechanism of exosome-delivered circ_0094343 in the proliferation, glycolysis, and chemosensitivity of colorectal cancer (CRC) cells. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chen, Li, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286929/
https://www.ncbi.nlm.nih.gov/pubmed/35854778
http://dx.doi.org/10.1155/2022/2878557
_version_ 1784748131579068416
author Li, Chen
Li, Xu
author_facet Li, Chen
Li, Xu
author_sort Li, Chen
collection PubMed
description OBJECTIVE: Currently, the role of circ_0094343 (circPTEN) on the chemosensitivity of CRC remains to be clarified. This study aimed to investigate the role and mechanism of exosome-delivered circ_0094343 in the proliferation, glycolysis, and chemosensitivity of colorectal cancer (CRC) cells. METHODS: Real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression level of circ_0094343, miR-766-5p, and TRIM67 (Tripartite motif-containing 67) in CRC clinical tissue samples and cells, transmission electron microscopy (TEM) to observe the morphology of exosomes, and nanoparticle tracking analysis (NTA) system to measure the diameter of exosomes. Besides, PKH67 fluorescent labeling was applied for assessing the level of exosome uptake by cells, MTT and cell clone formation assays for detecting cell proliferation and clone formation, respectively, and related kits for checking the glucose consumption, lactate production, and extracellular acidification rate (ECAR) in cells. Dual-luciferase reporter (DLR) gene assay was used for verifying the targeting relationship between circ_0094343 and miR-766-5p, miR-766-5p and TRIM67, RNA immunoprecipitation (RIP) experiment for the interaction between circ_0094343 and miR-766-5p, and Western blot for the protein level of exosome surface antigens (HSP70, CD63) and TRIM67 in cells in exosomes and cell lysates. RESULTS: circ_0094343 was significantly downregulated in CRC tissues, chemotherapy-resistant CRC tissues, and metastatic CRC tissues. Moreover, exosomes-carried circ_0094343 played an inhibitory role in the proliferation, clone formation and glycolysis of HCT116 cells. Meanwhile, it could also improve the chemosensitivity of HCT116 cells to 5-fluorouracil (5-FU), oxaliplatin (L-OHP), and doxorubicin (Dox). Additionally, circ_0094343 acted as a sponge for miR-766-5p, and miR-766-5p targeted and regulated TRIM67. In CRC tissues, miR-766-5p expression was negatively correlated with TRIM67 expression, while circ_0094343 was positively associated with TRIM67. Further, mechanistic validation also demonstrated that circ_0094343 could inhibit HCT116 cell proliferation, clone formation, glycolysis, and chemotherapy resistance via the miR-766-5p/TRIM67 axis. CONCLUSION: circ_0094343 inhibited the proliferation, clone formation and glycolysis of CRC cells and improved their chemosensitivity to various chemotherapeutic drugs via the miR-766-5p/TRIM67 axis. This finding may provide new insights into the treatment of CRC.
format Online
Article
Text
id pubmed-9286929
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-92869292022-07-18 Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis Li, Chen Li, Xu Contrast Media Mol Imaging Research Article OBJECTIVE: Currently, the role of circ_0094343 (circPTEN) on the chemosensitivity of CRC remains to be clarified. This study aimed to investigate the role and mechanism of exosome-delivered circ_0094343 in the proliferation, glycolysis, and chemosensitivity of colorectal cancer (CRC) cells. METHODS: Real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression level of circ_0094343, miR-766-5p, and TRIM67 (Tripartite motif-containing 67) in CRC clinical tissue samples and cells, transmission electron microscopy (TEM) to observe the morphology of exosomes, and nanoparticle tracking analysis (NTA) system to measure the diameter of exosomes. Besides, PKH67 fluorescent labeling was applied for assessing the level of exosome uptake by cells, MTT and cell clone formation assays for detecting cell proliferation and clone formation, respectively, and related kits for checking the glucose consumption, lactate production, and extracellular acidification rate (ECAR) in cells. Dual-luciferase reporter (DLR) gene assay was used for verifying the targeting relationship between circ_0094343 and miR-766-5p, miR-766-5p and TRIM67, RNA immunoprecipitation (RIP) experiment for the interaction between circ_0094343 and miR-766-5p, and Western blot for the protein level of exosome surface antigens (HSP70, CD63) and TRIM67 in cells in exosomes and cell lysates. RESULTS: circ_0094343 was significantly downregulated in CRC tissues, chemotherapy-resistant CRC tissues, and metastatic CRC tissues. Moreover, exosomes-carried circ_0094343 played an inhibitory role in the proliferation, clone formation and glycolysis of HCT116 cells. Meanwhile, it could also improve the chemosensitivity of HCT116 cells to 5-fluorouracil (5-FU), oxaliplatin (L-OHP), and doxorubicin (Dox). Additionally, circ_0094343 acted as a sponge for miR-766-5p, and miR-766-5p targeted and regulated TRIM67. In CRC tissues, miR-766-5p expression was negatively correlated with TRIM67 expression, while circ_0094343 was positively associated with TRIM67. Further, mechanistic validation also demonstrated that circ_0094343 could inhibit HCT116 cell proliferation, clone formation, glycolysis, and chemotherapy resistance via the miR-766-5p/TRIM67 axis. CONCLUSION: circ_0094343 inhibited the proliferation, clone formation and glycolysis of CRC cells and improved their chemosensitivity to various chemotherapeutic drugs via the miR-766-5p/TRIM67 axis. This finding may provide new insights into the treatment of CRC. Hindawi 2022-07-08 /pmc/articles/PMC9286929/ /pubmed/35854778 http://dx.doi.org/10.1155/2022/2878557 Text en Copyright © 2022 Chen Li and Xu Li. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Chen
Li, Xu
Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis
title Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis
title_full Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis
title_fullStr Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis
title_full_unstemmed Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis
title_short Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis
title_sort exosome-derived circ_0094343 promotes chemosensitivity of colorectal cancer cells by regulating glycolysis via the mir-766-5p/trim67 axis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286929/
https://www.ncbi.nlm.nih.gov/pubmed/35854778
http://dx.doi.org/10.1155/2022/2878557
work_keys_str_mv AT lichen exosomederivedcirc0094343promoteschemosensitivityofcolorectalcancercellsbyregulatingglycolysisviathemir7665ptrim67axis
AT lixu exosomederivedcirc0094343promoteschemosensitivityofcolorectalcancercellsbyregulatingglycolysisviathemir7665ptrim67axis