Cargando…
Survival Prediction Model for Patients with Esophageal Squamous Cell Carcinoma Based on the Parameter-Optimized Deep Belief Network Using the Improved Archimedes Optimization Algorithm
Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients' survival. Therefore, a parameter-optimized deep belief network based on the improved Archimedes optimization...
Autores principales: | Wang, Yanfeng, Zhang, Wenhao, Sun, Junwei, Wang, Lidong, Song, Xin, Zhao, Xueke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286952/ https://www.ncbi.nlm.nih.gov/pubmed/35844460 http://dx.doi.org/10.1155/2022/1924906 |
Ejemplares similares
-
Multistrategy Improved Sparrow Search Algorithm Optimized Deep Neural Network for Esophageal Cancer
por: Wang, Yanfeng, et al.
Publicado: (2022) -
Survival Risk Prediction of Esophageal Squamous Cell Carcinoma Based on BES-LSSVM
por: Wang, Yanfeng, et al.
Publicado: (2022) -
An Optimal WSN Node Coverage Based on Enhanced Archimedes Optimization Algorithm
por: Dao, Thi-Kien, et al.
Publicado: (2022) -
Development and Validation of the Predictive Model for Esophageal Squamous Cell Carcinoma Differentiation Degree
por: Wang, Yanfeng, et al.
Publicado: (2020) -
Archimedes Optimization Algorithm with Deep Learning-Based Prostate Cancer Classification on Magnetic Resonance Imaging
por: Ragab, Mahmoud, et al.
Publicado: (2023)