Cargando…

Socioeconomic Deprivation: An Important, Largely Unrecognized Risk Factor in Primary Prevention of Cardiovascular Disease

BACKGROUND: Socioeconomic deprivation is associated with higher cardiovascular morbidity and mortality. Whether deprivation status should be incorporated in more cardiovascular risk estimation scores remains unclear. This study evaluates how socioeconomic deprivation status affects the performance o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kimenai, Dorien M., Pirondini, Leah, Gregson, John, Prieto, David, Pocock, Stuart J., Perel, Pablo, Hamilton, Tilly, Welsh, Paul, Campbell, Archie, Porteous, David J., Hayward, Caroline, Sattar, Naveed, Mills, Nicholas L., Shah, Anoop S.V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287096/
https://www.ncbi.nlm.nih.gov/pubmed/35748241
http://dx.doi.org/10.1161/CIRCULATIONAHA.122.060042
Descripción
Sumario:BACKGROUND: Socioeconomic deprivation is associated with higher cardiovascular morbidity and mortality. Whether deprivation status should be incorporated in more cardiovascular risk estimation scores remains unclear. This study evaluates how socioeconomic deprivation status affects the performance of 3 primary prevention cardiovascular risk scores. METHODS: The Generation Scotland Scottish Family Health Study was used to evaluate the performance of 3 cardiovascular risk scores with (ASSIGN [Assessing cardiovascular risk using SIGN (Scottish Intercollegiate Guidelines Network) guidelines to ASSIGN preventive treatment]) and without (SCORE2 [Systematic Coronary Risk Evaluation 2 algorithm], Pooled Cohort Equations) socioeconomic deprivation as a covariate in the risk prediction model. Deprivation was defined by Scottish Index of Multiple Deprivation score. The predicted 10-year risk was evaluated against the observed event rate for the cardiovascular outcome of each risk score. The comparison was made across 3 groups defined by the deprivation index score consisting of group 1 defined as most deprived, group 3 defined as least deprived, and group 2, which consisted of individuals in the middle deprivation categories. RESULTS: The study population consisted of 15 506 individuals (60.0% female, median age of 51). Across the population, 1808 (12%) individuals were assigned to group 1 (most deprived), 8119 (52%) to group 2, and 4708 (30%) to group 3 (least deprived), and 871 (6%) individuals had a missing deprivation score. Risk scores based on models that did not include deprivation status significantly under predicted risk in the most deprived (6.43% observed versus 4.63% predicted for SCORE2 [P=0.001] and 6.69% observed versus 4.66% predicted for Pooled Cohort Equations [P<0.001]). Both risk scores also significantly overpredicted the risk in the least deprived group (3.97% observed versus 4.72% predicted for SCORE2 [P=0.007] and 4.22% observed versus 4.85% predicted for Pooled Cohort Equations [P=0.028]). In contrast, no significant difference was demonstrated in the observed versus predicted risk when using the ASSIGN risk score, which included socioeconomic deprivation status in the risk model. CONCLUSIONS: Socioeconomic status is a largely unrecognized risk factor in primary prevention of cardiovascular disease. Risk scores that exclude socioeconomic deprivation as a covariate under- and overestimate the risk in the most and least deprived individuals, respectively. This study highlights the importance of incorporating socioeconomic deprivation status in risk estimation systems to ultimately reduce inequalities in health care provision for cardiovascular disease.