Cargando…

SignalP 6.0 predicts all five types of signal peptides using protein language models

Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects...

Descripción completa

Detalles Bibliográficos
Autores principales: Teufel, Felix, Almagro Armenteros, José Juan, Johansen, Alexander Rosenberg, Gíslason, Magnús Halldór, Pihl, Silas Irby, Tsirigos, Konstantinos D., Winther, Ole, Brunak, Søren, von Heijne, Gunnar, Nielsen, Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287161/
https://www.ncbi.nlm.nih.gov/pubmed/34980915
http://dx.doi.org/10.1038/s41587-021-01156-3
Descripción
Sumario:Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.