Cargando…
SignalP 6.0 predicts all five types of signal peptides using protein language models
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287161/ https://www.ncbi.nlm.nih.gov/pubmed/34980915 http://dx.doi.org/10.1038/s41587-021-01156-3 |
_version_ | 1784748190777475072 |
---|---|
author | Teufel, Felix Almagro Armenteros, José Juan Johansen, Alexander Rosenberg Gíslason, Magnús Halldór Pihl, Silas Irby Tsirigos, Konstantinos D. Winther, Ole Brunak, Søren von Heijne, Gunnar Nielsen, Henrik |
author_facet | Teufel, Felix Almagro Armenteros, José Juan Johansen, Alexander Rosenberg Gíslason, Magnús Halldór Pihl, Silas Irby Tsirigos, Konstantinos D. Winther, Ole Brunak, Søren von Heijne, Gunnar Nielsen, Henrik |
author_sort | Teufel, Felix |
collection | PubMed |
description | Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data. |
format | Online Article Text |
id | pubmed-9287161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-92871612022-07-17 SignalP 6.0 predicts all five types of signal peptides using protein language models Teufel, Felix Almagro Armenteros, José Juan Johansen, Alexander Rosenberg Gíslason, Magnús Halldór Pihl, Silas Irby Tsirigos, Konstantinos D. Winther, Ole Brunak, Søren von Heijne, Gunnar Nielsen, Henrik Nat Biotechnol Brief Communication Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data. Nature Publishing Group US 2022-01-03 2022 /pmc/articles/PMC9287161/ /pubmed/34980915 http://dx.doi.org/10.1038/s41587-021-01156-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Brief Communication Teufel, Felix Almagro Armenteros, José Juan Johansen, Alexander Rosenberg Gíslason, Magnús Halldór Pihl, Silas Irby Tsirigos, Konstantinos D. Winther, Ole Brunak, Søren von Heijne, Gunnar Nielsen, Henrik SignalP 6.0 predicts all five types of signal peptides using protein language models |
title | SignalP 6.0 predicts all five types of signal peptides using protein language models |
title_full | SignalP 6.0 predicts all five types of signal peptides using protein language models |
title_fullStr | SignalP 6.0 predicts all five types of signal peptides using protein language models |
title_full_unstemmed | SignalP 6.0 predicts all five types of signal peptides using protein language models |
title_short | SignalP 6.0 predicts all five types of signal peptides using protein language models |
title_sort | signalp 6.0 predicts all five types of signal peptides using protein language models |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287161/ https://www.ncbi.nlm.nih.gov/pubmed/34980915 http://dx.doi.org/10.1038/s41587-021-01156-3 |
work_keys_str_mv | AT teufelfelix signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT almagroarmenterosjosejuan signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT johansenalexanderrosenberg signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT gislasonmagnushalldor signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT pihlsilasirby signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT tsirigoskonstantinosd signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT wintherole signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT brunaksøren signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT vonheijnegunnar signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels AT nielsenhenrik signalp60predictsallfivetypesofsignalpeptidesusingproteinlanguagemodels |