Cargando…
SignalP 6.0 predicts all five types of signal peptides using protein language models
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects...
Autores principales: | Teufel, Felix, Almagro Armenteros, José Juan, Johansen, Alexander Rosenberg, Gíslason, Magnús Halldór, Pihl, Silas Irby, Tsirigos, Konstantinos D., Winther, Ole, Brunak, Søren, von Heijne, Gunnar, Nielsen, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287161/ https://www.ncbi.nlm.nih.gov/pubmed/34980915 http://dx.doi.org/10.1038/s41587-021-01156-3 |
Ejemplares similares
-
GraphPart: homology partitioning for biological sequence analysis
por: Teufel, Felix, et al.
Publicado: (2023) -
Detecting sequence signals in targeting peptides using deep learning
por: Almagro Armenteros, Jose Juan, et al.
Publicado: (2019) -
DeepLoc 2.0: multi-label subcellular localization prediction using protein language models
por: Thumuluri, Vineet, et al.
Publicado: (2022) -
A Brief History of Protein Sorting Prediction
por: Nielsen, Henrik, et al.
Publicado: (2019) -
Temporal patterns of multi-morbidity in 570157 ischemic heart disease patients: a nationwide cohort study
por: Haue, Amalie D., et al.
Publicado: (2022)