Cargando…

Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation

Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Seok-Jo, Bale, Swarna, Verma, Priyanka, Wan, Qianqian, Ma, Feiyang, Gudjonsson, Johann E., Hazen, Stanley L., Harms, Paul W., Tsou, Pei-Suen, Khanna, Dinesh, Tsoi, Lam C., Gupta, Nilaksh, Ho, Karen J., Varga, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287188/
https://www.ncbi.nlm.nih.gov/pubmed/35856022
http://dx.doi.org/10.1016/j.isci.2022.104669
_version_ 1784748197448515584
author Kim, Seok-Jo
Bale, Swarna
Verma, Priyanka
Wan, Qianqian
Ma, Feiyang
Gudjonsson, Johann E.
Hazen, Stanley L.
Harms, Paul W.
Tsou, Pei-Suen
Khanna, Dinesh
Tsoi, Lam C.
Gupta, Nilaksh
Ho, Karen J.
Varga, John
author_facet Kim, Seok-Jo
Bale, Swarna
Verma, Priyanka
Wan, Qianqian
Ma, Feiyang
Gudjonsson, Johann E.
Hazen, Stanley L.
Harms, Paul W.
Tsou, Pei-Suen
Khanna, Dinesh
Tsoi, Lam C.
Gupta, Nilaksh
Ho, Karen J.
Varga, John
author_sort Kim, Seok-Jo
collection PubMed
description Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-β1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy.
format Online
Article
Text
id pubmed-9287188
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-92871882022-07-17 Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation Kim, Seok-Jo Bale, Swarna Verma, Priyanka Wan, Qianqian Ma, Feiyang Gudjonsson, Johann E. Hazen, Stanley L. Harms, Paul W. Tsou, Pei-Suen Khanna, Dinesh Tsoi, Lam C. Gupta, Nilaksh Ho, Karen J. Varga, John iScience Article Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-β1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy. Elsevier 2022-06-26 /pmc/articles/PMC9287188/ /pubmed/35856022 http://dx.doi.org/10.1016/j.isci.2022.104669 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Kim, Seok-Jo
Bale, Swarna
Verma, Priyanka
Wan, Qianqian
Ma, Feiyang
Gudjonsson, Johann E.
Hazen, Stanley L.
Harms, Paul W.
Tsou, Pei-Suen
Khanna, Dinesh
Tsoi, Lam C.
Gupta, Nilaksh
Ho, Karen J.
Varga, John
Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
title Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
title_full Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
title_fullStr Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
title_full_unstemmed Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
title_short Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
title_sort gut microbe-derived metabolite trimethylamine n-oxide activates perk to drive fibrogenic mesenchymal differentiation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287188/
https://www.ncbi.nlm.nih.gov/pubmed/35856022
http://dx.doi.org/10.1016/j.isci.2022.104669
work_keys_str_mv AT kimseokjo gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT baleswarna gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT vermapriyanka gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT wanqianqian gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT mafeiyang gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT gudjonssonjohanne gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT hazenstanleyl gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT harmspaulw gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT tsoupeisuen gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT khannadinesh gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT tsoilamc gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT guptanilaksh gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT hokarenj gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation
AT vargajohn gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation