Cargando…
Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation
Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287188/ https://www.ncbi.nlm.nih.gov/pubmed/35856022 http://dx.doi.org/10.1016/j.isci.2022.104669 |
_version_ | 1784748197448515584 |
---|---|
author | Kim, Seok-Jo Bale, Swarna Verma, Priyanka Wan, Qianqian Ma, Feiyang Gudjonsson, Johann E. Hazen, Stanley L. Harms, Paul W. Tsou, Pei-Suen Khanna, Dinesh Tsoi, Lam C. Gupta, Nilaksh Ho, Karen J. Varga, John |
author_facet | Kim, Seok-Jo Bale, Swarna Verma, Priyanka Wan, Qianqian Ma, Feiyang Gudjonsson, Johann E. Hazen, Stanley L. Harms, Paul W. Tsou, Pei-Suen Khanna, Dinesh Tsoi, Lam C. Gupta, Nilaksh Ho, Karen J. Varga, John |
author_sort | Kim, Seok-Jo |
collection | PubMed |
description | Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-β1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy. |
format | Online Article Text |
id | pubmed-9287188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92871882022-07-17 Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation Kim, Seok-Jo Bale, Swarna Verma, Priyanka Wan, Qianqian Ma, Feiyang Gudjonsson, Johann E. Hazen, Stanley L. Harms, Paul W. Tsou, Pei-Suen Khanna, Dinesh Tsoi, Lam C. Gupta, Nilaksh Ho, Karen J. Varga, John iScience Article Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-β1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy. Elsevier 2022-06-26 /pmc/articles/PMC9287188/ /pubmed/35856022 http://dx.doi.org/10.1016/j.isci.2022.104669 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Kim, Seok-Jo Bale, Swarna Verma, Priyanka Wan, Qianqian Ma, Feiyang Gudjonsson, Johann E. Hazen, Stanley L. Harms, Paul W. Tsou, Pei-Suen Khanna, Dinesh Tsoi, Lam C. Gupta, Nilaksh Ho, Karen J. Varga, John Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation |
title | Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation |
title_full | Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation |
title_fullStr | Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation |
title_full_unstemmed | Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation |
title_short | Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation |
title_sort | gut microbe-derived metabolite trimethylamine n-oxide activates perk to drive fibrogenic mesenchymal differentiation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287188/ https://www.ncbi.nlm.nih.gov/pubmed/35856022 http://dx.doi.org/10.1016/j.isci.2022.104669 |
work_keys_str_mv | AT kimseokjo gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT baleswarna gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT vermapriyanka gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT wanqianqian gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT mafeiyang gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT gudjonssonjohanne gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT hazenstanleyl gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT harmspaulw gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT tsoupeisuen gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT khannadinesh gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT tsoilamc gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT guptanilaksh gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT hokarenj gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation AT vargajohn gutmicrobederivedmetabolitetrimethylaminenoxideactivatesperktodrivefibrogenicmesenchymaldifferentiation |