Cargando…
Single-cell entropy network detects the activity of immune cells based on ribosomal protein genes
We developed a new computational method, Single-Cell Entropy Network (SCEN) to analyze single-cell RNA-seq data, which used the information of gene-gene associations to discover new heterogeneity of immune cells as well as identify existing cell types. Based on SCEN, we defined association-entropy (...
Autores principales: | Jin, Qiqi, Zuo, Chunman, Cui, Haoyue, Li, Lin, Yang, Yiwen, Dai, Hao, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287362/ https://www.ncbi.nlm.nih.gov/pubmed/35860411 http://dx.doi.org/10.1016/j.csbj.2022.06.056 |
Ejemplares similares
-
Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
por: Zuo, Chunman, et al.
Publicado: (2020) -
RDAClone: Deciphering Tumor Heterozygosity through Single-Cell Genomics Data Analysis with Robust Deep Autoencoder
por: Xia, Jie, et al.
Publicado: (2021) -
Cell-specific network constructed by single-cell RNA sequencing data
por: Dai, Hao, et al.
Publicado: (2019) -
c-CSN: Single-cell RNA Sequencing Data Analysis by Conditional Cell-specific Network
por: Li, Lin, et al.
Publicado: (2021) -
Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning
por: Zuo, Chunman, et al.
Publicado: (2022)